
CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Advanced Data Management

Medha Atre

Office: KD-219
atrem@cse.iitk.ac.in

Aug 1, 2016

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Recap

Overview of the relational and graph shaped data.

Overview of the general purpose tools like Hadoop,
SPARK.

Special purpose tools for the relational data, like MySQL,
PostgreSQL, Many other commercial stores like IBM DB2,
MonetDB, Virtuoso, Cassandra, Cloudera, BigTable etc.

Special purpose graph processing tools like BitMat,
RDF-3X, Neo4j, HypergraphDB, Pregel, Trinity etc.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Query Optimization

Involves choosing a query evaluation plan that reduces the
total cost of the query execution.

Cost includes:

Number of disk blocks/tuples to access.
Number of times a relation/block has to be read.
Any intermediate query results, their size, and cost of
writing them to the disk (disk spooling) if required.

The simplest way – create indexes.

Push selection predicates as down as possible.
SELECT PRODUCT.Description, PRODUCT.Brand WHERE

STORE.City=“New York” AND

STORE.Store key=SALES FACT.Store key AND

SALES FACT.Product key=PRODUCT.Product key

Push projections as down as possible.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Query Optimization

Consider various permutations of joins and other operators
without affecting the correctness of the results – use
commutativity, associativity, and distributive properties of
joins and other operators such as selections and
projections.

Histograms over unique column values.

Various permutations of joins – similar to how many
binary trees with n leaves, where n is the number of tables
to be joined – Catalan number Cn−1 = (2n−2)!

n!(n−1)!

E.g., for a join of 7 tables (or 7 self-joins as common in
graph data), number of join trees to be considered are 132!

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

IBM’s System R optimizer

Use database statistics, e.g., number of tuples in a table,
columnwise cardinality, distribution of unique values (a.k.a.
histograms), available indexes, index size, index range etc.

Consider only left or right deep join trees.

Focus on class of SQL queries without nesting.

Not to perform duplicate elimination while projecting out
the results, unless the query has a DISTINCT clause.

Account of CPU as well as I/O cost.

Estimating the result size of a join query is an NP-complete
problem! For more information see [NgoPODS2012,
AtseriasFOCS2008].

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Graphs and Relational Algebra

Since graphs can be stored as a relational table, and graph
pattern queries can be translated as SQL join queries, all the
relational algebra hardness results and query optimization
techniques generally apply to graph pattern queries too.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Recap

:Jerry

:Larry :Julia

:Veep:CurbYourEnthu :Seinfeld :NewAdvOldChristine

:LosAngeles :D.C. :Jersey:NewYorkCity

:hasFriend :hasFriend

:actedIn

:actedIn
:actedIn

:actedIn

:location :location :location :location

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Graph data and queries

Data

:Jerry :hasFriend :Larry

:Jerry :hasFriend :Julia

:Larry :actedIn :CurbYourEnthu

:Julia :actedIn :Seinfeld

:Julia :actedIn :Veep

:Julia :actedIn :CurbYourEnthu

:Julia :actedIn :NewAdvOldChristine

:Seinfeld :location :NewYorkCity

:Veep :location :D.C.

:CurbYourEnthu :location :LosAngeles

:NewAdvOldChristine :location :Jersey

Graphical Representation

:Jerry

:Larry :Julia

:Veep:CurbYourEnthu :Seinfeld :NewAdvOldChristine

:LosAngeles :D.C. :Jersey:NewYorkCity

:hasFriend :hasFriend

:actedIn

:actedIn
:actedIn

:actedIn

:location :location :location :location

SPARQL
SELECT ?friend ?sitcom WHERE {

:Jerry :hasFriend ?friend .

?friend :actedIn ?sitcom .

?sitcom :location :NewYorkCity .

}

Eqv. SQL query

SELECT t1.o, t2.o from rdf as t1, rdf as

t2, rdf as t3 WHERE t1.s=“:Jerry” and

t1.p=“:hasFriend” and t2.p=“:actedIn”

and t3.p=“:location” and

t3.o=“:NewYorkCity” and t1.o=t2.s and

t2.o=t3.s

:Jerry

?sitcom

:NewYorkCity

:hasFriend

:actedIn

:location

?friend

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Graphs – key problems

Increasing size of graphs – from a few hundred million to
over a billion triples, e.g., DBPedia has ≈ 600 million
triples, Linked Open Data project over 30 billion triples.

While the size of the secondary memory (hard disk) has
increased from a few hundred GBs to a few TBs, the size
of the typical main memory still remains at a few GBs.

Low selectivity queries – those which access a large
amount of data and cannot benefit from fast merge-joins,
e.g., queries with multiple joins on various attributes (join
variables in case of SPARQL queries).

Contemporary systems that do pairwise pipelined
(vectorized) joins suffer in case of low-selectivity queries,
due to skewed cardinality of attribute values.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Example of a low selectivity query

a 1

a 2

a 3

c 1

c 2

c 3

c 4

c 5

c 6

c 7

c 8

b 1

b 2

b 3

a 4

T1.M=T2.M

T1

13 tuples in T1

15 tuples in T2

SM

1 a

2 a

N

3 a

1 b

2 b

3 b

4 b

2 c

1 c

3 c

1 d

2 d

3 d

M

28 tuples in all

T2

If we do a standard join of these
two tables, we get 48 results
(tuples) – a polynomial increase in
the size of the results. This effect
exacerbates for queries with
multiple joins on different
attributes, as is common with the
RDF and SPARQL queries.

Instead, we want to find a way to
keep the memory footprint of the
query processor as low as possible
to increase its scalability.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

BitMat – key ideas

A data structure based on compressed bit-vectors to represent
RDF data called BitMat.

Pattern matching algorithm that works directly on the
compressed structure without uncompressing it.

New way of representing a pattern query abstractly, especially
for wildcards and optional pattern matches – Graph of
Supernodes.

Pre-join (pattern matching) pruning using the technique of
semi-joins, thereby reducing the I/O overhead, and keeping a
large amount of data in memory.

Evaluation results on the popular RDF datasets of sizes up to
1.33 billions on a commodity laptop of 8 GB memory.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

BitMat – brief overview

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Each unique value of subjects,

This bitcube is then sliced along

predicates, and objects in the data is

mapped to the respective dimension

of the bitcube.

each dimension and the 2D BitMats

are stored as the index structure.

Subject−dim

Predicate−dim

:Jerry

:NewAdvOldChristine

:CurbYourEnthu

:Veep

:Seinfeld

:Julia

:Larry

:Larry

:Julia

:Seinfeld

:Veep

:C
urbYourE

nthu

:N
ewAdvOldChris

tin
e

:N
ewYorkCity

:D
.C

.

:LosAngeles

Object−dim

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

000
0 0

:Jersey

Data
:Jerry

:Larry

:hasFriend

:Julia
:actedIn:actedIn

:CurbYourEnthu

:LosAngeles

:Veep

:location

:D.C.

:Seinfeld

:actedIn

:actedIn

:NewAdvOldChristine

:Jersey:NewYorkCity

:location

:hasFriend

:location :location

bitcube

BitMats

:hasFriend

:actedIn

:locatedIn

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

Fold and Unfold

1

1

1

1

1

1

1

1

Original BitMat

1 1 1

Column Bitarray

RetainDimension = ’column’

1

1

Row Bitarray

RetainDimension = ’row’

Fold

1

1

1

1

dimension
Fold in row

Fold in column
dimension

fold(BMtp , RetainDimension) procedure is nothing but projection of distinct
values from the given dimension of BitMat, e.g., in the triple pattern (?friend
:actedIn ?sitcom) if BMtp is an O-S BitMat, then ?sitcom is in the “row”
dimension of the BitMat.

fold(BMtp , dim?j) ≡ π?j (BMtp)

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

1

1 1

dimension

1

1

1

1

1 1

1

1

1

1

1

1

Original BitMat

Original BitMat

Unfold

After unfold

After unfoldRetainDimension = ’row’

dimension
Unfold on row

RetainDimension = ’column’

MaskBitArray

MaskBitArray

Unfold on column

For every unset bit in the MaskBitArray, unfold(BMtp , MaskBitArray,
RetainDimension) clears all the bits corresponding to that position of the
RetainDimension.

unfold(BMtp , β?j , dim?j) ≡ {t | t ∈ BMtp , t.?j ∈ β?j}
t is a triple in BMtp that matches tp. β?j is the MaskBitArray containing
bindings of ?j to be retained. dim?j is the dimension of BMtp that represents ?j ,
and t.?j is a binding of ?j in triple t. In short, unfold keeps only those triples
whose respective bindings of ?j are set to 1 in β?j , and removes all other.

CS698F

M. Atre

Recap

Query
Optimization

Graphs

BitMat

Assignment

First Assignment

First assignment will be posted on the course webpage by the
end of the day today. Due date will be August 15, 2016
midnight.
Please check the course webpage regularly for any important
announcements, and assignment submission instructions.
www.cse.iitk.ac.in/users/atrem/courses/cs698f2016fall/

www.cse.iitk.ac.in/users/atrem/courses/cs698f2016fall/

	Recap
	Query Optimization
	Graphs
	BitMat
	Assignment

