Advanced Data Management

Medha Atre

Office: KD-219
atrem@cse.iitk.ac.in

Oct 20, 2016
Unlike plain text, the underlying data has inherent structure in it, which indirectly defines the relationship between the “data nodes” that contain those keywords.

The underlying structure needs to be taken into consideration while determining the answers to the keyword searches.

Hence the problem is no longer confined to just creating an inverted word to document ID index as is done in the IR approaches.

Tuples are viewed as vertices in the “data-graph”.

Connections between the tuples are primary-foreign key constraints.

Results to the keyword searches are subgraphs of this data-graph.
Schema-Based Keyword Search

- Two graphs considered – graph of database relations, based on the schema (schema-graph G_S), and graph of the tuples based on the schema (data-graph G_D).

- Basic SQL queries are used to locate all the tuples that contain given keywords (or subsets of the given keywords).

- A **Minimal Total** Joining Network of Tuples (MTJNT) is such that – it is a subgraph of the data-graph, where two tuples are connected to each other if they have a primary-foreign key dependency, and they contain a subset of the query keywords. Together, all the tuples in a given subgraph covers all the given keywords.
Schema-Based Keyword Search

- Size of this subgraph is controlled with T_{max} parameter to avoid arbitrarily large subgraphs. T_{max} defines the maximum distance between the two tuples in the given subgraph.

- Additionally a scoring function is defined (domain specific) to avoid generating too many results, especially for frequently occurring keywords.
Candidate Network Generation: A set of candidate networks (schema-subgraphs) are generated over the given database schema graph. These set of CNs will be complete and duplication free. Algorithms like DISCOVER [Hritidis2008] S-KWS [Markowetz2007] propose to propose a good set of CNs in order to avoid evaluation of a large number of them.

Candidate network evaluation: After identifying CNs, they are translated into proper SQL queries in order to get the set of candidate tuple-subgraphs, i.e., to get all MTJNT for the each of the CNs.
Schema-based Keyword Search

- **Candidate network evaluation**: two main challenges:
 - CNs share common subexpressions, so we want to identify and evaluate them only once to improve performance.
 - Optimizing each of the SQL queries, and especially making use of these common subexpressions in the optimization plans.
Schema-based Keyword Search

- Without complete CN evaluation:
 - Distinct root semantics: Define a distinct root, and identify all the tuples that are reachable within certain distance (D_{max}) from the root tuple – this is more like a star graph than connected trees.
 - Distinct core semantics: Instead of just one distinct root, define a community of roots, multi-centers that are connected to each other in the data-graph. Find tuples within D_{max} distance of these multi-centers, over a path following certain path tuples.
Graph-based Keyword Search

- Does not consider DB schema, but considers tuples and their primary-foreign key dependencies as the connections.
- No use of structured queries like SQL.
- Tree-based or Subgraph-based semantics used to decide the structure of the tuple subgraphs to be returned.
- Tree-based semantics: (1) Steiner tree based semantics, and (2) Distinct root based semantics.
Finding optimal steiner trees is an NP-complete problem.
But since the size of distinct keywords in the query and hence the size of the tuple subgraphs (constrained by the top-k scoring or weight function) is small, we can indeed find the optimal Steiner tree.

- BANKS-I [Bhalotia2002] uses *backward search*.
- Dynamic-Programming Best First (DPBF) [Ding2007] uses dynamic programming.
Graph-based Keyword Search

- BANKS-II proposes bidirectional search instead of just backward search.
- Bi-level indexing (BLINKS [He2007]) uses indexes to speed up BANKS-II.
- Data-graph summaries are created using graph of *SuperNodes* and *SuperEdges*. This graph can fit in memory and can be used to prune unwanted components of the data-graph to limit the search space and improve performance.
Keyword Search over Native Graphs

- Ideas remain the same, but the data representation and interpretation changes.
- Graphs often don’t have an associated schema, hence native schema-based approaches are not useful.
- Graphs like RDF have edge-labels which define the relationship and can be part of the keyword searches.
- Concept of distance can be more well-defined in terms of the edge-weights in the graphs.
r-Cliques [Karger2011]

- Does not assume underlying schema (schema-less).
- Instead of tree-based substructures, it assumes arbitrary subgraphs as the answers.
- Filtering criterion is that the distance between any two pair of nodes within the given substructure is at most “r”.
- For outputting top-k results, it generates all the qualifying r-cliques and then does relative ranking among them to output top-k.
- Finding optimal r-cliques is NP-hard, hence they propose a branch and bound kind algorithm, which approximates r-cliques to a factor of 2, i.e., the distance between the pair of nodes in the candidate subgraph can be at most $2r$.
r-Cliques

- **Branch and Bound:**
 - For each keyword in the set of keywords \(\{k_1, k_2...k_l\} \), find all the graph nodes that contain that keyword – use pre-built inverted index.
 - Initialize \(rList \) to contain all the nodes for a keyword say \(k_1 \).
 - For each \(k_i, 2 \leq i \leq l \), find all the nodes that contain \(k_i \) and that are within \(r \) distance from the nodes in the \(rList \). Add all such qualifying nodes to the respective \(rList \).
r-Cliques

- Branch and Bound is quite slow due to having to consider all the candidate nodes in a pairwise manner, hence authors propose Polynomial Delay Algorithm.
 - For each keyword in the set of keywords \(\{k_1, k_2...k_l\} \), find the respective graph nodes that contain the particular keyword \(\{C_1, C_2...C_l\} \).
 - Now consider the search space \(C_1 \times C_2 \times ... \times C_l \), and from this find one top answer.
 - This is done by iteratively choosing the shortest distance (less than \(r \)) node from every node in \(C_i \) to every other set \(C_j, i \neq j \).
r-Cliques

- After outputting the top answer from this space the space is divided as follows:
 - If the top answer from the original search space was \(\{v_1, v_2, V - 3, v_4\} \), the space is divided into following subspaces:
 - \(\{C_1 - v_1\} \times C_2 \times C_3 \times C_4 \)
 - \(C_1 \times \{C_2 - v_2\} \times C_3 \times C_4 \)
 - \(C_1 \times C_2 \times \{C_3 - v_3\} \times C_4 \)
 - \(C_1 \times C_2 \times C_3 \times \{C_4 - v_4\} \)

- The procedure is repeated on these subspaces, until we have top-\(k \) answers, or until we can no longer produce an answer that satisfies the \(r \) distance criterion.
Top-k Keyword Queries over RDF graphs [Tran2009]

- Take an RDF graph and create a summary over it.
- Create an inverted index on the RDF data graph, and also consider IR techniques like stemming, synonyms etc.
- From a given set of keywords, first match the nodes in the summary graph, augmented with the nodes matching from the data graph.
- Form top-k SPARQL basic graph pattern queries based on various scoring parameters like path-lengths in the queries, popularity score of the keywords, and keyword matching score.
- Evaluate the chosen top-k SPARQL queries over the original RDF graph to output results.
- Note that here query results can be larger than k because it is the SPARQL query candidates that are bounded by k!
Key Points

- Other approaches more or less follow the same concepts.
- Key points to note:
 - Consider graph summaries for fast pruning of search space.
 - Inverted index for fast locating the candidate data and summary graph nodes.
 - Come up with SPARQL pattern (or SQL join) queries and evaluate them to get the candidate results, filter them based on scoring function and threshold criterion.
 - Use more native approaches like Steiner Trees, Distinct Root trees, Distinct Core, r-Clique to get the top-k answers.