
CS698F

M. Atre

Recap

Graph KeyWd
Search Advanced Data Management

Medha Atre

Office: KD-219
atrem@cse.iitk.ac.in

Oct 20, 2016



CS698F

M. Atre

Recap

Graph KeyWd
Search

Keyword Searches over Relational DB

Unlike plain text, the underlying data has inherent
structure in it, which indirectly defines the relationship
between the “data nodes” that contain those keywords.

The underlying structure needs to be taken into
consideration while determining the answers to the
keyword searches.

Hence the problem is no longer confined to just creating
an inverted word to document ID index as is done in the
IR approaches.

Tuples are viewed as vertices in the “data-graph”.

Connections between the tuples are primary-foreign key
constraints.

Results to the keyword searches are subgraphs of this
data-graph.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Schema-Based Keyword Search

Two graphs considered – graph of database relations,
based on the schema (schema-graph GS), and graph of
the tuples based on the schema (data-graph GD).

Basic SQL queries are used to locate all the tuples that
contain given keywords (or subsets of the given keywords).

A Minimal Total Joining Network of Tuples (MTJNT) is
such that – it is a subgraph of the data-graph, where two
tuples are connected to each other if they have a
primary-foreign key dependency, and they contain a subset
of the query keywords. Together, all the tuples in a given
subgraph covers all the given keywords.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Schema-Based Keyword Search

Size of this subgraph is controlled with Tmax parameter to
avoid arbitrarily large subgraphs. Tmax defines the
maximum distance between the two tuples in the given
subgraph.

Additionally a scoring function is defined (domain specific)
to avoid generating too many results, especially for
frequently occuring keywords.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Schema-based Keyword Search

Candidate Network Generation: A set of candidate
networks (schema-subgraphs) are generated over the given
database schema graph. These set of CNs will be
complete and duplication free. Algorithms like DISCOVER
[Hritidis2008] S-KWS [Markowetz2007] propose to
propose a good set of CNs in order to avoid evaluation of
a large number of them.

Candidate network evaluation: After identifying CNs,
they are translated into proper SQL queries in order to get
the set of candidate tuple-subgraphs, i.e., to get all
MTJNT for the each of the CNs.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Schema-based Keyword Search

Candidate network evaluation: two main challenges:

CNs share common subexpressions, so we want to identify
and evaluate them only once to improve performance.
Optimizing each of the SQL queries, and especially making
use of these common subexpressions in the optimization
plans.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Schema-based Keyword Search

Without complete CN evaluation:

Distinct root semantics: Define a distinct root, and
identify all the tuples that are reachable within certain
distance (Dmax) from the root tuple – this is more like a
star graph than connected trees.
Distinct core semantics: Instead of just one distinct root,
define a community of roots, multi-centers that are
connected to each other in the data-graph. Find tuples
within Dmax distance of these multi-centers, over a path
following certain path tuples.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Graph-based Keyword Search

Does not consider DB schema, but considers tuples and
their primary-foreign key dependencies as the connections.

No use of structured queries like SQL.

Tree-based or Subgraph-based semantics used to decide
the structure of the tuple subgraphs to be returned.

Tree-based semantics: (1) Steiner tree based semantics,
and (2) Distinct root based semantics.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Graph-based Keyword Search

Finding optimal steiner trees is an NP-complete problem.

But since the size of distinct keywords in the query and
hence the size of the tuple subgraphs (constrained by the
top-k scoring or weight function) is small, we can indeed
find the optimal Steiner tree.

BANKS-I [Bhalotia2002] uses backward search.

Dynamic-Programming Best First (DPBF) [Ding2007]
uses dynamic programming.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Graph-based Keyword Search

BANKS-II proposes bidirectional search instead of just
backward search.

Bi-level indexing (BLINKS [He2007]) uses indexes to
speed up BANKS-II.

Data-graph summaries are created using graph of
SuperNodes and SuperEdges. This graph can fit in
memory and can be used to prune unwanted components
of the data-graph to limit the search space and improve
performance.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Keyword Search over Native Graphs

Ideas remain the same, but the data representation and
interpretation changes.

Graphs often don’t have an associated schema, hence
native schema-based approaches are not useful.

Graphs like RDF have edge-labels which define the
relationship and can be part of the keyword searches.

Concept of distance can be more well-defined in terms of
the edge-weights in the graphs.



CS698F

M. Atre

Recap

Graph KeyWd
Search

r-Cliques [Karger2011]

Does not assume underlying schema (schema-less).

Instead of tree-based substructures, it assumes arbitrary
subgraphs as the answers.

Filtering criterion is that the distance between any two
pair of nodes within the given substructure is at most “r”.

For outputting top-k results, it generates all the qualifying
r-cliques and then does relative ranking among them to
output top-k .

Finding optimal r-cliques is NP-hard, hence they propose a
branch and bound kind algorithm, which approximates
r-cliques to a factor of 2, i.e., the distance between the
pair of nodes in the candidate subgraph can be at most 2r .



CS698F

M. Atre

Recap

Graph KeyWd
Search

r-Cliques

Branch and Bound:

For each keyword in the set of keywords {k1, k2...kl}, find
all the graph nodes that contain that keyword – use
pre-built inverted index.
Initialize rList to contain all the nodes for a keyword say k1.
For each ki , 2 6 i 6 l , find all the nodes that contain ki
and that are within r distance from the nodes in the rList.
Add all such qualifying nodes to the respective rList.



CS698F

M. Atre

Recap

Graph KeyWd
Search

r-Cliques

Branch and Bound is quite slow due to having to consider
all the candidate nodes in a pairwise manner, hence
authors propose Polynomial Delay Algorithm.

For each keyword in the set of keywords {k1, k2...kl}, find
the respective graph nodes that contain the particular
keyword {C1,C2...Cl}.
Now consider the search space C1 ×C2 × ...×Cl , and from
this find one top answer.
This is done by by iteratively choosing the shortest
distance (less than r) node from every node in Ci to every
other set Cj , i 6= j .



CS698F

M. Atre

Recap

Graph KeyWd
Search

r-Cliques

After outputting the top answer from this space the space
is divided as follows:

If the top answer from the original search space was
{v1, v2,V − 3, v4}, the space is divided into following
subspaces:

{C1 − v1} × C2 × C3 × C4

C1 × {C2 − v2} × C3 × C4

C1 × C2 × {C3 − v3} × C4

C1 × C2 × C3 × {C4 − v4}
The procedure is repeated on these subspaces, until we
have top-k answers, or until we can no longer produce an
answer that satisfies the r distance criterion.



CS698F

M. Atre

Recap

Graph KeyWd
Search

Top-k Keyword Queries over RDF graphs
[Tran2009]

Take an RDF graph and create a summary over it.

Create an inverted index on the RDF data graph, and also
consider IR techniques like stemming, synonyms etc.

From a given set of keywords, first match the nodes in the
summary graph, augmented with the nodes matching from
the data graph.

Form top-k SPARQL basic graph pattern queries based on
various scoring parameters like path-lengths in the queries,
populary score of the keywords, and keyword matching
score.

Evaluate the chosen top-k SPARQL queries over the
original RDF graph to output results.

Note that here query results can be larger than k because
it is the SPARQL query candidates that are bounded by k!



CS698F

M. Atre

Recap

Graph KeyWd
Search

Key Points

Other approaches more or less follow the same concepts.

Key points to note:

Consider graph summaries for fast pruning of search space.
Inverted index for fast locating the candidate data and
summary graph nodes.
Come up with SPARQL pattern (or SQL join) queries and
evaluate them to get the candidate results, filter them
based on scoring function and threshold criterion.
Use more native approaches like Steiner Trees, Distinct
Root trees, Distinct Core, r-Cliques to get the top-k
answers.


	Recap
	Graph KeyWd Search

