CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

Advanced Data Management

Medha Atre

Office: KD-219 atrem@cse.iitk.ac.in

Oct 17, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Announcement

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- The third assignment is due tonight 23:59 on Canvas.
- The fourth (and the last) assignment will be announced this week. It will be a reading assignment, and will be due in two weeks from the announcement date.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recap of the course

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- We started with fundamentals of the join/structured query optimization, focused on the graph-shaped data.
- Learnt systems like BitMat, RDF-3X, TripleBit etc.
- Learnt about fundamentals of *distributed* management of the data and query optimization over it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Learnt about how various data distribution strategies affect query optimization strategies.
- Read papers related to the above topics.
- Special topics:
 - Reachability queries over graphs.
 - Regular path queries over graphs.
 - Keyword searches over graphs.

Keyword Searches over Relational DB

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- Unlike plain text, the underlying data has inherent structure in it.
- This underlying structure indirectly defines the relationship between the keywords and the "data nodes" that contain those keywords.
- The underlying structure needs to be taken into consideration while determining the answers to the keyword searches.
- Hence the problem is no longer confined to just indexing plain text with unique document IDs, and searching through the keywords in them – of course, the current text search has come a long way, which now takes into consideration page-rank, semantic and physical closeness of the keywords, and the overall contextual relevance of the document to the given keywords.

Keyword Searches over Relational DB

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- Tuples are viewed as vertices in the "data-graph".
- Connections between the tuples are primary-foreign key constraints.
- Results to the keyword searches are *subgraphs* of this data-graph.
- Since these results can be very high, especially for popular or frequently occuring keywords, a *scoring function* is used to list only "top-k" results matching the given keywords.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Keyword Searches over Relational DB

CS698F

M. Atre

Announcemen

Recap

Keyword Search

Approaches Schema-based Graph-based

- There can be different ways of doing this "matching" of keywords to the subgraphs of the data-graph.
 - Schema-based approaches: that take into consideration the underlying DB schema and primary-foreign key constraints and SQL as the querying language.
 - Schema-free (or graph based) approaches: that view the entire relational DB as a graph of tuples and use *steiner trees, distinct rooted trees, r-radius steiner graphs,* or *multi-center subgraphs* kind structures to define the connectivity between the tuples and do ranking among the matching subgraphs.

Schema-based

CS698F

M. Atre

- Announcement
- Recap
- Keyword Search
- Approaches
- Schema-based Graph-based

- Two graphs considered graph of database relations, based on the schema (schema-graph G_S), and graph of the tuples based on the schema (data-graph G_D).
- Basic SQL queries are used to locate all the tuples that contain given keywords (or subsets of the given keywords).
- A Minimal Total Joining Network of Tuples (MTJNT) is such that – it is a subgraph of the data-graph, where two tuples are connected to each other if they have a primary-foreign key dependency, and they contain a subset of the query keywords. Together, all the tuples in a given subgraph covers all the given keywords.

Schema-based

CS698F

M. Atre

- Announcement
- Recap
- Keyword Search
- Approaches
- Schema-based Graph-based

- An MTJNT is required to be *total* and *minimal*.
 - Totality: Each keyword in the query much be present in at least one tuple.
 - Minimality: Removal of any tuple from this subgraph will violate the totality condition.
- Size of the subgraph is controlled with T_{max} parameter to avoid arbitrarily large subgraphs. T_{max} defines the maximum distance between the two tuples in the given subgraph.
- Additionally a scoring function is defined (domain specific) to avoid generating too many results, especially for frequently occuring keywords.

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches

Schema-based Graph-based

- Candidate Network Generation: A set of candidate networks (schema-subgraphs) are generated over the given database schema graph. These set of CNs will be *complete* and *duplication free*. Algorithms like DISCOVER [Hritidis2008] S-KWS [Markowetz2007] propose to propose a good set of CNs in order to avoid evaluation of a large number of them.
- Candidate network evaluation: After identifying CNs, they are translated into proper SQL queries in order to get the set of candidate tuple-subgraphs, i.e., to get *all* MTJNT for the each of the CNs.

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches

Schema-based Graph-based

Candidate network evaluation: two main challenges:

- CNs share common subexpressions, so we want to identify and evaluate them only once to improve performance.
- Optimizing each of the SQL queries, and especially making use of these common subexpressions in the optimization plans.

 S-KWS construct an *operator mesh*. Cluster of CNs is set of operator trees that share common-subexpressions.
 While evaluating all the CNs in a mesh, projected relation with the smallest number of tuples is selected.

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches

Schema-based Graph-based

Candidate network evaluation:

- KDynamic introduces the concept of \mathcal{L} -lattice.
- Scoring function is used to avoid generation of all the MTJNTs.
- DISCOVER-II proposes 3 algorithms for top-k MTJNTs –
 (1) Sparse, (2) Single-Pipelined, (3) Global-Pipelined.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 These algorithms are based on the concept of tuple monotonicity.

CS698F

M. Atre

Announcement

Recap

Keyword Search

- Approaches
- Schema-based Graph-based

- Other approaches not based on "connected tree semantics" (as seen until now):
 - Distinct root semantics: Define a distinct root, and identify all the tuples that are reachable within certain distance (D_{max}) from the root tuple – this is more like a star graph than connected trees.
 - Distinct core semantics: Instead of just one distinct root, define a community of roots, multi-centers that are connected to each other in the data-graph. Find tuples within D_{max} distance of these multi-centers, over a path following certain path tuples.

Graph based approaches

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- Does not consider DB schema, but considers tuples and their primary-foreign key dependencies as the connections.
- No use of structured queries like SQL.
- Tree-based or Subgraph-based semantics used to decide the structure of the tuple subgraphs to be returned.
- In tree-based semantics Q-SUBTREEs are considered which can further be classified into (1) Steiner tree based semantics, and (2) Distinct root based semantics.

Steiner Trees

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- Finding optimal steiner trees is an NP-complete problem.
- But since the size of distinct keywords in the query and hence the size of the tuple subgraphs (constrained by the top-k scoring or weight function) is small, we can indeed find the optimal Steiner tree.
- BANKS-I [Bhalotia2002] uses backward search.
- Dynamic-Programming Best First (DPBF) [Ding2007] uses dynamic programming.

Distinct Root Based and Graph-Summaries

CS698F

M. Atre

Announcement

Recap

Keyword Search

Approaches Schema-based Graph-based

- BANKS-II proposes bidirectional search instead of just backward search.
- Bi-level indexing (BLINKS [He2007]) uses indexes to speed up BANKS-II.
- Data-graph summaries are created using graph of SuperNodes and SuperEdges. This graph can fit in memory and can be used to prune unwanted components of the data-graph to limit the search space and improve performance.