CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

Advanced Data Management

Medha Atre

Office: KD-219 atrem@cse.iitk.ac.in

Oct 6, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recap

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

- General regular path query problem (first type mentioned before) is NP-hard [Mendelzon, Wood 1995]
- Some polynomial time algorithms suggested for a restricted set of regular expressions.
- Even polynomial time algorithms for large graphs are expensive as often their complexity is of the order of n^x, where n is the total number of nodes in the graph and x ≥ 2.
- Early solutions consisted of creating regular expressions representing all the paths between *every* pair nodes in the graph L(R_{xy}) [Tarjan 1981].
- Considering entire graph G as an NDFA with x as the start state and y as the final state, and create an intersection graph with the NDFA M of L(R) [Mendelzon, Wood 1995].

Recap

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

- Creating equivalence classes of paths in the entire graph [Abiteboul, Vianu 1997]
- Creating equivalence classes of <u>nodes</u> based on their incoming paths – *B-bisimilarity* – 1-index. Similar create 2-index, and from them create *T-index* (template index) [Milo, Suciu 1999].
- XML (XPath) solution space:
 - P-indexes: Path indexes, A(k), D(k), M(k), M*(k), APEX, Bitmapped Path Index (BPI).
 - 2 D-indexes: Node index for determining ancestor-descendant relationship, with method similar to interval labeling.
 - **3** T-index: Used mainly for *twig* queries on XML.

Challenges

CS698F

M. Atre

Recap

General Graphs

LCF

Regular Pattern Queries

Other Topics

Next Class

- Not nice structure like trees (may have cycles).
- Large sizes and hence possible exponential paths (impossible to index).
- Edge labels as an additional dimension.
- Even with the restricted set of regular language which may have polynomial time solutions, problem remains computationally challenging due to the sheer size of the graphs, e.g., several million nodes.
- Restricted set of regular language is included as a part of the SPARQL 1.1 standard.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

CS698F

M. Atre

Recap

General Graphs

LCR

- Regular Pattern Queries
- Other Topics
- Next Class

- Problem definition: Given a graph G with edge label set S, a pair of nodes (x, y), and a subset of edge labels $Q \subseteq S$, does there exist a path from x to y such that the path label set L(p) is a subset of Q, $L(p) \subseteq Q$.
- L(p) is the set of all the unique edge labels that appear on a given path.
- This is a restricted regular path query problem where the regular language is *R* := *R*⁺|*t*, *t* := *Q*, i.e., *t* is a terminal that can take any value from the set *Q*.

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

- Trivial (expensive) solution: For any pair of nodes (x, y), maintain all the unique sets of path-labels for all the paths between them.
- Instead maintain a set S_{min} of minimal sufficient path labels between (x, y), such that:

 $S_{min} = \{L(p) | L(p) \in S_0 \land \exists L(p') \in S_0, s.t., L(p') \subset L(p)\}$

Computing S_{min} requires a modified single source shortest path kind algorithm (e.g., Floyd-Warshall) O(|V|²(^{|Σ|}_{|Σ/2|})), Σ is the total number of edge labels.

M. Atre

- Recap
- General Graphs
- LCR
- Regular Pattern Queries
- Other Topics
- Next Class

- Hence we go for an alternate solution:
 - Sampling subset of vertices repeatedly.
 - Compute single source generalized transitive closure M(u, v) of minimal path labels just for those vertices, where u is a sampled vertex.
 - Use the above to determine approximate edge weight and error bound (based on Hoeffding-Bernstein bound) for all the edges in the graph.
 - From these two values compute two maximal spanning trees for given *G*.
 - Sample vertices repeatedly (with replacement) to get alternate spanning trees, and stop once condition in the *Hoeffding-Bernstein-Tree* algorithm is achieved.
- Total computational complexity $O(n|V||E|(\binom{|\Sigma|}{\Sigma/2}) + n/n_0(|E| + |V|\log|V|)).$

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

- Let us consider key points.
- On a spanning tree (maximal or not), authors define P_n as the set of paths where both starting and ending edges are not in the spanning tree.
- For P_n minimal path labels NT(u, v).
- With L(P_T(u, v)) as the set of path labels for a spanning tree path between (u, v), we have:

 $M'(u, v) = \{\{L(P_T(u, u')) \odot NT(u', v') \odot \{L(P_T(v', v))\} \\ |u' \in succ(u), v' \in pred(v)\}\}$

 Using the above formula, and approximate maximal spanning tree along with the reachability index created on the spanning tree, answer the reachability queries.

Path Pattern Queries

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

Regular language considered:

$$F ::= c |c^{\leq k}| c^+ |FF|$$

- 3-D reachability index, where the third dimension is the edge-labels (colors as the authors say), which notes the length of the *shortest* path between the given nodes with just that given edge-label (color).
- Queries evaluated using join-based algorithm, by breaking down the given regular expression into multiple components.
- Authors also discuss regular language containment and equivalence to reduce a given expression to its minimal form in order to achieve better query evaluation, by avoiding unnessary computations.

くしゃ 本理 ティヨ チィヨ クタマ

Other topics in regular path queries

CS698F

M. Atre

Recap

General Graphs

LCR

Regular Pattern Queries

Other Topics

Next Class

- Opimizing regular path queries using graph schemas [Fernandez, Suciu 1998].
- Algebraic rewriting of the regular path queries for optimization [Grahne, Thomo 2003].
- Answering regular path queries using views [Calvanes et al 2000].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Next Class

CS698F	
M. Atre	
Recap	
General Graphs	We will review methods of doing "keyword searches" on graph data.
LCR	
Regular Pattern Queries	
Other Topics	Have a happy mid competer record and do not forget
Next Class	Have a happy mid semester recess and do not forget Assignment-3! :-)