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Abstract

Qualitative orientation calculi attempt to capture only those orientational distinc-
tions that are salient for reasoning about the physical world. Many calculi for orientation
assume reflective symmetry - i.e. antipodal relations have equal ranges. Rules defined in
natural language for human usage, for example navigation rules for vessels at sea, can be
most flexibly expressed by an asymmetric calculus. However, most organisms have eyes in
the “front” and hence a finer grained perception for front than for “back’. In most proposed
models one cannot encode such asymmetry. Furthermore, most qualitative orientation cal-
culi propose ranges of orientations (intervals), and the boundaries between intervals are
also labelled as “exact” or “ideal” relations. In practice (e.g. in implementations) however,
such exact relations are zero probability events, and are associated with tolerances, thus
introducing an extraneous interval at implementation time. Here we propose an interval-
only calculus, k-OPAA (k-granularity Oriented Point Asymmetric Algebra), for relative
orientation among oriented points. The granularity of the calculus can be arbitrary and
asymmetric. k-OPAA gives the user freedom to choose how a 2D plane can be divided
from an egocentric perspective. We also show the calculus is a relation algebra in the sense

of Tarski and a Qualitative Calculus.
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Chapter 1

Introduction

Qualitative reasoning seeks to make only those abstractions that are meaningful for reason-
ing about the physical world. Qualitative spatial representation assigns qualitative relations
between spatial entities and their surroundings. The main motivation to use qualitative rep-
resentation of space, is the human ability to perceive objects and space in qualitative rather
than quantitative metrical terms. Spatial information is often represented in relative terms
by humans, a good example of this being the vocabulary used to describe space in natural
language (near, far, behind, across etc). Qualitative Spatial Reasoning (QSR) tries to reason

with such qualitative relations.

Cohn and Hazarika in [CHO1] give an overview of major qualitative spatial repre-
sentation and reasoning techniques. They survey the main aspects of spatial representations
and also consider methods for qualitative reasoning. Qualitative representations of space
based on distance, orientation, shape etc., are discussed. Other areas for interest in QSR

are robot navigation, computer vision, engineering design etc.

Spatial relations such as “front” or “near”, which represent different categories of
relations, may involve different precisions; thus “abuts” or “front” is nearly exact, while
“overlaps” or “front-left” indicates a range or interval. In many formal algebras dealing
with space, exact relations are often distinguished by constraints in a tighter dimension
than that of the embedding space; e.g. for orientations, “front” may be an exact direction,
while “front-left” permits a range of values [Fra91] [RM04] [MDFO05] [MROS]. However,



both cognitively[Lan03], [VSF*97] and algorithmmically [Gap94], it is clear that exact
relations are almost always associated with some tolerances. Also, reasoning at different
scales need to introduce intervals where there were only points. Cognitive experiments
([KDK*04], and also Section.1.2 below) also indicate that an adequate model to represent
direction needs to have intervals, and not exact orientations, for representing directions like
front, back, left and right.

However, since the exact relations in spatial calculi do not deal with these toler-
ances, substantial differences arise between theory and implementation. For example, a
calculus may specify “front”, as an exact direction, but an implementation may treat it as

an angle between +e€ degrees.

These are theoretical models and all the ramifications, in terms of accuracy, com-
putational complexity, expressiveness etc., are all defeated in implementation. As an alter-
native we prove here a theoretical model, where every direction, whether front or front-left

is associated with intervals.

Most spatial calculi dealing with orientations assume reflective symmetry, (relation
(0) exists then so does the relation (7+6)). Hence, for every discretization there is a con-
verse. While such a converse relation is necessary for ensuring a relational algebra in the
sense of Tarski, it has been shown that this is not the case for binary point relations, where
a relation encodes both relative position/orientation of A with respect to B and for B with
respect to A; in this situation the converse of a relation is just a swapping of the two parts
of a relation [MDFO05].

On the other hand, maintaining asymmetry is important for biological organisms,
e.g. humans have finer grained perception in the front and little or no perception of what is
behind them. Similarly, artificial agents such as wheeled robots and humanoids, may pay
closer attention to objects in front than the back; so it would have a finer angular tolerance
for relations towards the front than at the back, resulting in an asymmetric calculus. In the

Section.1.2 we shall also report an experiment that evaluates the magnitude of disparity.

Here we propose a new qualitative spatial calculus for relative orientation, k-OPAA
(k-granularity Oriented Point Asymmetric Algebra) which is an interval-only calculus with
an arbitrary and asymmetric granularity. For any two objects A, B abstracted as oriented

points, with an intrinsic reference direction (measured from an absolute framework), k-
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Figure 1.1: A boat abstracted to an Oriented Point

- -

(a) Head-On (b) Crossing (c) Overtaking

Figure 1.2: Navigation Configurations: The distinction between Head-On and Crossing is
crucial for many navigation rules.

OPAA encodes the orientation of A with respect to B and the orientation of B with respect

to A in the same relation.

1.1 Reasoning with Orientation

Many spatial and orientation calculi simplify objects and locations by representing them as
2D points. We try to represent objects as points with orientation[MDF05]. Oriented points
are related to concept of dipoles (objects as line segments) [MRWOO].

Oriented points reduce objects with an intrinsic front to zero-length line segments
with direction. In this conceptualization the size of the objects has no importance, since
they are abstracted to point-objects with a direction. An object is represented by an oriented
point, a 2D point and its direction in a 2D plane. Fig.1.1 abstracts a boat to an oriented

point with 2D coordinates and a direction.

Objects can be abstractly represented by a point with an intrinsic direction (front) or
an oriented point with a direction. An oriented point S, in a 2D plane P, is represented by
global coordinates ps = (xs,ys), with xg, ys € R and reference direction 65 (also measured

w.r.t a global framework), S = (ps, Os).
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Figure 1.3: Cardinal Direction Calculus: A is to the North-East of B [Fradl]

Traffic rules for vessels at sea are specified by the International Regulations for
Preventing Collisions at Sea, COLREGS (Collision Regulations) [Mal06] or by US Na-
tional conventions [Gua99]. Navigation rules are described using configurations of ves-
sels. Fig.1.1 describes three configurations which are distinguished in the rules, head-On
(Fig.1.2a), overtaking (Fig.1.2c), crossing (Fig.1.2b). Expected behavior in the head-on
case is different from that in the crossing case. These angular distinctions are therefore of
great importance. Actions are specified for a vessel in each of these configurations, depend-
ing on its vessel type, direction of wind etc. Vessels at sea are abstracted to oriented points
to reason about the orientations and relative positions of other vessels and maintain a rule-
compliant behavior. In the following sections, we present another calculus for reasoning

about such vessels, and introduce our model k-OPAA.

Existing calculi for spatial reasoning vary in their representation of exact relations
or of symmetry [RS88] [Lev03]. Some calculi like OPRA ([MDFO05]) and Cardinal Direc-
tion Calculus ([Fra91]) discretize orientation in terms of equal angles - but this is rarely
how the world is broken up by a cognitive agent or by a task situation. The Cardinal Direc-
tion Calculus by Frank ([Fra91]) tries to represent the relative position of points in terms

of global directions. Individual objects are considered direction-less entities. (See Fig.1.3)

Objects can also be represented as oriented line segment with two points (dipole).
Each dipole is associated with a start and an end point, used to represent objects with an
intrinsic front. The dipole calculus encodes relative orientation of two dipoles based on
their start and end points.(See Fig.1.4). [DMO5] used the dipole calculus to model agent

behavior in dynamic environments. [MRWOO]

Renz and Mitra in [RMO04], propose the S TAR calculus, which permits an arbitrary



Figure 1.4: This relation is written as A llrl B in dipole calculus.
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(a) STAR4[15,45,135,165] (b) OPRA,

Figure 1.5: Binary relation algebras: (a)All objects have the same(global) reference di-
rection: A 3 B; B 11 A (b)Each object has its own intrinsic orientation(shown by arrow)
AslB

discretization of orientations in terms of m intervals zones, bounded by m exact orientations
(See Fig.1.5a). S TAR retains the reflective symmetry and all points are assumed to have the
same global reference direction. Fig.1.5a shows two points A and B with a global reference
direction and use S TAR4[15,45, 135, 165]. The relation between A and B is 3 and relation
between B and A is 11. B falls in region 3 of A and A falls in region 11 of B.

Unary orientation relations as in STAR [RMO04] and Cardinal Directions [Fra91]
fail to handle egocentric relations, since the orientations are fixed along an an absolute
frame of spatial reference, and are not relative [Lev03]. The OPRA calculus proposed by
Moratz et al. in [MDFO05], handles this by maintaining binary relations, i.e. orientations
of A wrt. B and B. wurt. A are both maintained (See Fig.1.5b). OPRA divides the
360° circle divided into 2m uniform angle intervals, bounded 2m by exact orientations. An
OPRA relation between two oriented points A and B encodes the relative position of B with
respect to A and relative position of A with respect to B. There are (4m + 1) = 4m base

relations including the identity relation in an OPRA calculus with granularity m.

OPRA and S T AR have intervals and exact orientations (lines) to represent relations;

however, exact relations are unstable and donot to occur in practice.
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Figure 1.6: TPCC : A B fr C (relation of between A and C in the direction of B is fr(front
right)). Note that the boundary between [f and f/ is not a relation, though that between [ f
and rf is.

An interesting dichotomy is observed in the Ternary Point Configuration Calcu-
lus(T PCC) calculus proposed by Moratz and Ragni in [MROS8] (Fig.1.6). The calculus
considers orientation discretization with eight regions; some of the boundaries (e.g. front,
left) as a labeled tessellations, whereas other boundaries like the lines at 45° are not; ie.
one of the neighbouring relations is a half-open interval incorporating this line. In Fig.1.6

point A is the origin, B is relatum and C is the referent.

OPRA ideally replicates the ego-centric approach required when dealing with an
application like robots in traffic. While this may seem like the perfect model at first sight,
it still falls short of representing the asymmetry of human and humanoid vision [KDK*04].
Dividing the 360° into equal regions does not replicate this asymmetry. Unlike OPRA,

k-OPAA gives the user complete freedom regarding the granularity of the calculus.

1.2 Asymmetry in human cognition

[VSF*97] considers the effects of direction of the axis with respect to its intrinsic front to
explore how this affects decisions such as Front, Behind, Front-Left etc. Here subjects are
tested with two experiments. In the first one, they are given a set of prepositions to choose

from, to describe the relative position of a certain object with respect to a reference object.
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Figure 1.7: Prepositions chosen w.r.t reference object in [VSF*97]

In the second experiment, the subjects are allowed to freely describe the relative position of
the object with respect to the referent. In both the experiments it was found that, subjects
preferred to use two words like “front-left”, “back-right” etc. Single word prepositions
like “front”, “right” etc. were used only in cases where the objects were considered to be
perfectly aligned (See Fig.1.7). This shows that subjects were using axis imposed by the

reference object.

[MGNEOO] investigates the how size of the frame affects these direction terms and
identify a “sweet spot”. It is argued that direction terms like “in-front” do not discretize
space into fixed quadrants based on the reference object’s location. Direction terms are to
be viewed as continuous fields within which points have differing levels of membership in a
fuzzy class. To define the continuous fields, a single nonlinear function is used. Computer
vision models are developed which take into account the effects of size, shape, motion, etc.

which encode the ambiguity of conceptual descriptions.

Klippel et al. [KDK*04] investigate the concept of direction at intersections in street
networks by asking users to choose various icons which symbolize different possibilities
to make a turn. The results indicate that the 360 degrees being divided such that, Left and
right are symmetric, front and back asymmetric. Verbal route directions and schematization

of maps result in Fig.1.8.

While there is clear evidence of front-back asymmetry in the literature, in order

to build a calculus, we need magnitudes. To get a measure of the asymmetry in human
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Figure 1.8: [KDK*04] shows that while left and right are symmetric, front and back are
asymmetric.

B = EEE

| left. H front-left H front H front-right || right H back-right H back || back- left H none |

Figure 1.9: Subjects are asked imagine themselves piloting the boat. They need to choose
the preferred direction term used to describe the position of the disk w.r.t themselves in the
boat.

orientation cognition, we conduct a simple experiment to understand how front and back
are perceived in the egocentric perspective. The subject is asked to classify a set of points
with respect to a small boat, shown at the center of the screen. (See Fig.1.9) Small discs are
shown at various orientations, a certain distance from the boat. The following instructions

are read out to the user:

There is a boat in the middle. You will be seeing a disk appear near the boat.

If you are piloting the boat, would you consider the disk to be to the FRONT,
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Figure 1.10: Values of Front(solid) are tighter than Back(dotted)

LEFT etc. of your boat? Or is it in one of the in-between orientations like
Front-left, Back-right etc?

The direction could be specified in terms of eight options (buttons): front, right, back, left,
and front-right, front-left, back-right, back-left. The subject was given a trial run to get

familiar with the setting, and then asked to classify a pre-programmed set of 30 disks.

Twenty subjects reported their perceptions. They reported the results verbally, while
the experimenter clicked the menu to avoid false presses by some early subjects. The results
(Fig.1.10) indicate a somewhat tighter distribution for the points in the Front direction
(solid line curve, around #=0), than in the Back direction (dashed line curve). While the
sample size is somewhat small to make very strong conclusions, it does appear that there is

a larger spread for the Back region, lending credence to the claim for asymmetry.



For a given application it may be appropriate to choose a frequency level (80%)
and the angle ranges are front 17° and back 33°. Mean of front is 48.2 and the standard
deviation 36.56 and the Mean of front is 58.15 and the standard deviation 33.14.

1.3 Thesis Organization

Chapter 2 gives the formal definition of the calculus k-OPAA. We also define the standard
operators to be applied on a spatial calculus. Composition operator is explained in detail
and an algorithm gives a comprehensive way to calculate the same. k-OPAA is shown
to be a relation algebra in the sense of Tarski and is proved to be a qualitative spatial
calculi. Chapter 3 gives the application of k-OPAA to the navigation simulator “Sailaway”.
Transition sequences, which chart the relation trajectories of a vessel based on their actions
are constructed for k-OPAA. Rule compliant behavior for vessels at sea is explained and
the transition graphs help us in deciding whether a certain vessel is rule compliant or not.

The architecture of the simulator is explained and the reactive behavior is also encoded.

10



Chapter 2

k-OPAA Calculus

The k-OPAA (k-granularity Oriented Point Asymmetric Algebra) calculus deals with rela-
tive positions of oriented points by representing the relations of both points in the intrinsic
frames of each other. A vessel is abstracted to an oriented point, 2D point with its front
being the reference direction 6 with respect to a global framework. A typical configuration
like head-on (Fig.2.1a) the 6-OPAA[5,45, 120,240,315, 355] relation is £). The OPRA4
relation 418 (see Fig.2.1c) never arises, since 0 is an exact relation, this is a zero-probability
event. In contrast, using 6-OPAA[S, 45, 120,240, 315, 355] gives us the direction front as-

sociated with a tolerance of 10°.

[MDFO05] also gives a simple path based example, where the robot uses a qualitative
orientation calculi to move from one place to another. The robot reasons about its surround-
ings using standard constraint propagation techniques to avoid collisions and incrementally

moves towards its destination. A similar example, can be used for reasoning with k-OPAA.

e X

(2) 6-OPAA : /9 (b) 6-OPAA : 12 (c) OPRA4 : 4/

Figure 2.1: Vessels are head-on

11



3

Figure 2.2: 6-OPAA[S, 45, 120,240,315, 355]. The intervals are labeled starting with zero,
so interval 3 spans the sector [120,240).

2.1 k-OPAA Calculus: Definition

Given a two-dimensional plane P, for each oriented point S € P, S = (ps,0s) = ((xs,ys),6s),
with the calculus m-OPAA[6y, . ..,0m-1] where 0 < 09 < 81 < 93... < 8,1 < 360, specifies
m half-lines (rays) which intersect at S. Each of the m rays make an angle 6; (0 < j < m)

with its reference direction, 0.

For any point S € P, these m rays partition P into m disjoint angular zones with re-
spect to its reference direction. Intervals are numbered in the counter-clockwise direction,
0,1,...,m—1. The interval from [5,,_1, 0¢) is numbered 0, interval from [6¢,6;) is 1, ... and

interval from [0,,_2,0,,_1) is m — 1. A 2D interval numbered i, spans the sector [6;_1, ;).

Fig.2.2 represents the calculus 6-OPAA[S, 45, 120,240,315, 355] (the dotted line
represents the reference direction). Interval O spans the sector [,,-1, ), 1.. any point in
0 makes an angle Ay with the reference direction such that 355° < Ay < 5° . Similarly,
interval 1 spans the sector [y, d1), i.e. any point in 1 makes an angle A; with the reference
direction such that 5° < A; < 45°. Interval 5 spans the sector [d4, 05), 1.6. any point in 5

makes an angle As with the reference direction such that 315° < A5 < 355°.

The set of all base relations, K, between two points A = (pa,64) and B = (pp, 0p)
each with a calculus m-OPAA[dy, 01, ..., 0,,—1] are defined as,

e the identity relation id = {ps = pp, 04 = Op}.

e if A and B have equal cartesian coordinates p4 = pp, but different reference directions
04 # 0p, then A <{ B0 <i,j<m-1)(see Equation 2.2).

12



Figure 2.3: relyp = AZ2B

e if A and B have different cartesian coordinates p, # pp, relation is Az{ B (Fig.2.3). B
lies in sector i of A and A lies in sector j of B (0 < i, j < m — 1) (see Equation 2.1).
The set of all k-OPAA relations, K is the power set of K.

In Fig.2.3 the oriented points A and B are associated with 6-OPAA(S, 45, 120, 240, 315, 355].
relsp gives the relations between A and B as AAiB, i.e. the relative position of B with re-
spect to A falls in the interval 4 and the relative position of A with respect to B falls in the

interval 2.

© represents a cyclic subtraction on Rigy. ¢4p represents the direction of AB with
respect to the reference direction of A, 64 and ¢ps represents the direction of BA with

respect to the reference direction of B, 05.

Formally, two points A, B have different cartesian coordinates (ps # pp) and are
represented by the calculi m-OPAA[6y, . . .,0m-1], then relsp = AA{B O<i,j<m-1),

(Gic1 S Pap©Os <) AN (6j-1 < Ppa© 0 <6)) (2.1)

m-OPAA[6, ..., 0,-1] has m? base relations if py # ps.

If A and B have same cartesian coordinates (p4 = pp) but different reference direc-
tions (64 # 6p), relag=A <! B(0<i,j<m— 1),

(0i.1 <0004 <) A (6]'_1 <6,60p< 5J) 2.2)

If 6; ©6;-1 < 6; © 61, the value of j can be pre-decided by 6,1 = 6,-; + 64 © 05 and

13



0; = 6; + 64 © 6. Hence, m-OPAA[0y,...,0,-1] has m base relations if py = pp and
(B4 # Op).

There is only one identity relation, id (p4 = pp and 64 = 0g). Hence, m-OPAA[6y, . .., 0p-1]

has m? + m + 1 base relations.

Satisifying the following three conditions makes it a Qualitative Calculus in the
sense of [LR04]:

e The set of all base relations should be Jointly Exhaustive and Pairwise Disjoint
(JEPD). A set of base relations, K, is JEPD if, Vx,y (x,y are oriented points), there
is a single relation {xRy | R € K}.

e The calculus should be closed under the operators: Union (U), Intersection (N), Con-
verse (—), Complement (") and Composition (o). The set of relations should also
contain an Empty relation ({}), an Identity relation (id) and a Universal relation (| ]).
See Section.2.2.

e The calculus should be a relation algebra in the sense of Tarski. Constraint based
reasoning techniques used for spatial relations as introduced by Ladkin and Maddux

in [LM94], are applicable to relation algebras. See Section.2.4

2.2 Operators

k-OPAA calculus is closed under the operators (U, N, —,’, o).

e Empty relation - {} - is the null set.
e Identity relation - id = {ps = pp, 64 = Op}

e Universal relation - | | - is the union of all base relations.

The operators Union (U), Intersection (N), Complement (") can be computed using regular

set-theoretic definitions of the relations.

1. Converse Operator (—):

14



o If relyp = id then relpy = rel;, = id.
o Ifrelyp :<{ then relgy = rely, :<§., ((pa = pB), 64 # Op).
o Ifrelyp = A{, then relgy = rely, = A;, (pa # pp).
2. Composition Operator (o): The composition operator output is defined in terms of
the variables s , t which will be obtained in the next section.
o idorelyp =relypoid = relyp
o If relyp = 4{, relgc = 4(, then relyc = £7.(See Section 2.3.1 (Case 1))
o Ifrel,p = A{, relgc :<i, then relsc = £7.(See Section 2.3.2 (Case i1))

o Ifrelyp :<{, relpc :<f€, then relyc =<;. (See Section 2.3.3 (Case iii))

2.3 Composition Operator

Composition operator is explained using the simple geometric semantics of the k-OPAA
relations. Composition is defined only for the base relations. The methods that we have

used are very close to the composition operator in OPRA[FLWDO07]. Consider three points
A= (pA’ 9/-\)’ B = (p37 98)’ C= (pC’ QC)

2.3.1 Casei: (relag = 2], relgc = 2L, relac = £))

When all three points have different cartesian coordinates,

pa # P # pc, See Fig.2.4. We need to determine relsc = /7, given relsp and relgc.

Fig.2.5 introduces the triangle constraint. Ap represents the direction of A oriented
towards B and A¢ representing the the direction of A oriented towards C. « is the angle
between A and Ac. Similarly, 5 is the angle between B, and B¢ and v is the angle between
C4 and Cp. Since A, B, C are distinct points, they can form a triangle with a, 8 and vy as its
angles. Hence @ + 8 + v = 180°. [FLWDO07]

Given relsp and relpc, we need to find relyc, i.e., we need to find the values of ¢ and

s when i, j, k and [ are given. We know the relative position of B with respect to A from i

15



Figure 2.4: Triangle ABC- a + 8 + v = 180 (follows from [FLWDO7])

Figure 2.5: Triangle ABC (follows from [FLWDO07])

16



and the relative position of A with respect to B from J. This can be represented by,

(1’25;951', ﬁ:6j65ka 7:51955

Here the values of i and ¢ denote the intervals of Z}, j and k denote sectors of
?, [ and s denote sectors of ? To handle this, we represent @ is bounded by [a;, @»)
in the positive orientation and by [a3, @4) in the negative orientation. Similarly, 8 and y
are bounded by [B1, B2), [¥1,Y2), in the positive orientation and by [B3, B4), [V3,Y4), in the
negative orientation respectively.

@) =06,-190;, @ =06,00,
a3 =0,_190;, a3=0;00,_;
B1=0j-1©6k P2=0;0 01,
B3 =0k1©6;, Ba=0866O0
Y1=01-1005, Y2=06,006s1,
Y3 =0,100;, Y4=0,0061

In the case of positive orientation, @ € [y, a3), B8 € [B1,52), ¥ € [Y1,7Y2). Hence

a+fB+y=nm

= rme€la+pi+ynLa+ B+ y2)
In the case of negative orientation, @ € [a3, @4), B € [B3,84), ¥ € [y3,v4). Hence

7€ [az+ B3+ y3, a4+ Ps +ya)

232 Caseii: (relap =</, relgc = 2L, relsc = £9)

When two points have the same cartesian coordinates, and one is different, py = pp # pc,

See Fig.2.6. We need to determine relsc = /7, given relsp and relpc.
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Figure 2.6: Composition with p, = pg # pc (follows from [FLWDO7])

@ =0,=0;00Y =060

@y =01, @ =6,

@3 =01, @y =90,
B1=06;166 P2=0;001,
B3 =0k.106), Ps=0rO0;
Y1 =0-100d5, Y2=06,0051,
V3 =0,100;, Y4=0,00,_1

In the case of positive orientation, a + 8 + y = 2,

2r € [ar + 1 +yi,a2 + B2+ y2)

In the case of negative orientation 27 € [@3 + 53 + V3, @4 + B4 + V4).

2.3.3 Caseiii: (relap =</, relgc =<!,relyc =<;)

When all three points have the same cartesian coordinates,

pa = pp = pc. See Fig.2.7. We need to determine relsc =<, given relyp and relpc.
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Figure 2.7: Composition with p4 = pgp = pc¢ (follows from [FLWDO7])

ay =0;-1, ay =0,
B1 = 06k-1, Pi = O,
Y1 =01, Y1 =0,

a+p+y=2n

= 2mela;+B1+vi,a2+ 62+ v2)

2.3.4 Algorithm for Composition Operator

The algorithm tests the existence of the triangle (ABC) with all possible values of ¢ and s
(relyc = £9) for the given {i, j, k,[}. See Algorithm.1. It is an O(k*) complexity algorithm,
where k is the granularity of the corresponding k-OPAA.

2.4 Reasoning with k-OPAA

Let K be the set of all base relations of k-OPAA, and K is the power set of K.
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Algorithm 1 Composition (relsp, relpc)

1: if relyp = id V relgc = id then > one id relation
2: Ll =idoR=Roid=R
3: else
4: fort=0tok-1do
5: for s =0tok-1do
6: if rel g = <{ A relge = <i then > two < relations
7: See case iii
8: else .
9: if relas = <! V relgc = <! then > one < relation
10: See case ii
11: else > case 1 - Only Positive orientation mentioned
12: @1 = 0,1 - 0; @ = 0; - 0j_1
13: Bi1=06j1-06f2=0;-0k1
14: Y1=01-1-05Y2=0;-051
15:
16: if oy + 61 +y <m<a,+ B+ 7y, then
17: relyc = relyc U Zf
18: end if
19: end if
20: end if
21 end for
22: end for
23: end if
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2.4.1 k-OPAA as Relation Algebra

ri,rj € K are base relations. Compound relations, Ry, R, € K. For r; € Ry, rj € Ry,

(RioRy) = U;jrior)) (2.3)
(RiIURY)™ = U j(nur)~
= Uy, 07 U ry) 2.4)

The relation algebra K = (K, U,N, —,",0,{},id, | |).

To prove that k-OPAA (K) is a relation algebra in the sense of Tarski, the following
conditions must be satisfied [Mad06].

¢ Rule 1: Commutative:- (R UR,) = (R, UR))

(relAB U I"EZCD) = (I"EZCD U relAB).

e Rule 2: Associative:- (R UR,) UR; = R; U (R, UR3)

(I"EZAB U VEZCD) U relEF = VEZAB U (}’elc]_) U relEF)

¢ Rule 3: Huntington’s Axiom:- (R} UR))" U (R| UR,) = R}
(rel),z Urel.,)) U (rel, Urelcp)
= ((rel),p) N (rel;.;,)) U ((rel),p) N rely.,)
= (relyp Nrelcp) U (relyp Nrel,)

= VEZAB

e Rule 4: Associativity:- (R o R;) o R3 = R; o (R o R3)

(relag o relgc) o relgr = relyp o (relgc o relgr)

e Rule 5: Distributivity:- (R; UR;) o R3 = R; U (R o R3)

(relyp U relgc) o relgr = relyp o (relpc o relgr) (see Equation.2.3)

e Rule 6: Identity Law:- id o R=Roid =R

idorelyg =relyp oid = relsp
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¢ Rule 7:Involution:- (R7)~ =R
relyg = id, ((relpp)™)~ = (id)~ = id
relsp =<{, ((relap)™)~ = (<§-)V :<{

relag = 2], ((relap) ™)~ = (£)~ = 2]

¢ Rule 8:Distributivity:- (R UR;)™ = R UR}

(relyp U relcp)™ = rely, U rels,, (see Equation.2.4)

e Rule 9: Involute Distributivity:- (R; o R;)™ = Ry o R
(relyp o relgc)™ = rel;. = relcy,

relg. orely, =relcg o relgy = relcy

¢ Rule 10: Tarski/De Morgan Axiom:- R o (R oR)) < R),
Here x < y © xUy = y. Rules 1,2 and 3 are necessary for K to be a boolean
algebra. K is also a boolean algebra with the monoid taken to be a conjunction,
hence it is a residuated boolean algebra. Residuated boolean algebra is a relation

algebra according to [JT93].

2.4.2 Constraint Satisfaction

Given a set of n oriented points {S,S,,...,5,}, and a finite set of binary constraints ©,
Syrel.,S, suchthat S ,,S, € S and rel,, € B. The Constraint Satisfaction Problem (CS P),
deals with finding atleast one instance of n oriented points, which satisfy all the constraints
(®). The constraint network is a graph, with oriented points (S, Sy, S ...), as nodes and
the binary relations are the edges (rel,,, rel,,, rel,,...). The CS P for k-OPAA is similar
to OPS AT, defined by [MDF05]. OPSAT can be solved using the standard constraint

network techniques with infinite domains mentioned by [LM94].

A necessary condition for proving the consistency of the CS P was proposed by
Mackworth in [Mac77], the path-consistency method. A network is path-consistent if, for
any three nodes S ,, S, S ;, there exists a relation on the edge (S, S,) and is a subset of the
composition of relations between (S, S ;) and (S, S,). Given two nodes S,,S, € § with

edge (relation) rel,,, then we need to find anode S, € § such that,
rely, « rely, N (rely; o rel,)
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Figure 2.8: Two boats abstracted to oriented points and each associated with 6-
OPAA[S, 45,120,240, 315, 355].

where rel,,, rel,., rel,, € B. The path-consistency method in the context of spatial reasoning
is well explained by Renz and Nebel in [RN99].

Allen proposed an NP-Complete solution for path-consistency, it can be determined
in O(n?) time (n is the number of nodes in the constraint network). If the resulting CS P has
the same relations as the original, it is path-consistent. If an empty relation occurs between
two nodes, the CS P is inconsistent.[Al183]

2.4.3 Conceptual Neighborhood

The notion of conceptual neighborhood has been introduced by Freksa [Fre91]. Two rela-
tions of a qualitative spatial calculus are conceptual neighbors if they can be continuously

transformed into each-other without resulting in a third relation in between.

According to Equation.2.5, the conceptual neighbors of 2§ are {49, 22, 2,, 23, 23, 23,
é}, Z;} [DFW*07] [DWO07]

j+1 j—1 j—1 j—1 j+1
VAN SN SNV AR

A J
cn(4;) =1{4,. 4 i—1° %iv10 Lixlo

j+l1
i+1° Zie1° L) (2.5)
Assume that two boats A and B, with intrinsic fronts, are abstracted to oriented

points. Each point is associated with 6-OPAA([S, 45, 120, 240, 315, 355]. As show in Fig.2.8,

the two boats have the relation Az)B.

Let us try to understand how the rotating objects will affect the relation. When
object A turns right, the relative position of B will fall in the angular zone numbered 1.
Conversely, when object A turns left, the relative position of B will fall in the angular zone
numbered 5 (cyclic subtraction).[DWO07]
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Figure 2.9: 6-OPAA[S, 45,120,240, 315, 355] - Possible neighborhood transitions 18 when
objects rotate ([DWO7]).

Fig.2.9 illustrates the neighborhood transitions for the relation 48 based on actions.
We use transition graphs which represents the 6-OPAA relations as nodes and the actions
as edges. Using this we can determine whether a certain set of actions lead to a certain

relation.
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Chapter 3

Qualitative Spatial Reasoning with

k-OPAA

The k-OPAA calculus deals with relative positions of oriented points by representing the
relations of both points in the intrinsic frames of each other. This treatment is similar to
OPRA (Oriented Point Relation Algebra) . For comparison, we consider using k-OPAA,
for in an application which uses OPRA, the formalization of navigation rules for vessels at
sea[ DFW*(07]. Traffic rules for vessels at sea are specified by the International Regulations
for Preventing Collisions at Sea, COLREGS (Collision Regulations) of the International
Maritime Organization (IMO) [Mal06] [Gua99].

Navigation rules are encoded using OPRA to represent configurations (spatial con-
stellation of vessels) by [DFW*07]. Given the orientation relation between two vessels in

OPRA terms, a set of rules are defined, to map a situation to its corresponding configuration

3

Figure 3.1: 6-OPAA[S, 45, 120, 240, 315, 355]
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Figure 3.2: Neighborhood  transitions based on actions from 6-
OPAAS, 45,120, 240,315, 355] relation 18

specified by the COLREGS. Rule compliant behavior of a vessel can be verified with the
transitions of OPRA relations. The actions are, turn starboard (turn right, represented by
S), turn port (turn left, represented by P), keep midships (stay the course, represented by
M).

Actions are performed over a period of time. Temporal information can be inte-
grated in qualitative spatial representation by using conceptual neighborhoods as described
in [Fre91] [DWO07]. The movement of an agent can be modeled as a sequence of neigh-
boring spatial relations which hold for adjacent time intervals. Using this qualitative rep-
resentation of trajectories, neighborhood-based spatial reasoning can be used as a simple,

abstract model of agent navigation [DMOS5].

According to the Equation.2.5, the relation £ of has £, /1, 2, 23, 23, 23, /4

as its neighbors (Assume we are using the calculus from Fig.3.1). A change in direction or

and 23

position can lead to a different relation. This is represented graph in Fig.3.2, nodes contain

the relation and the edges represent the actions.

When two vessels have a 6-OPAA[S, 45, 120, 240, 315, 355] relation /2, if both turn
starboard (represented by (S, S)), they may reach the relation £]. However, the graph is

non-deterministic. Transition from one relation to another, is dependent not just on the
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action, but also on various parameters like relative velocities, sizes, positions etc. The
same action set (S, S) may also lead them to relations A? or 1(1). Similarly, from relation 18,
the actions (S,P) or (M,P) may also result in the relation 4(5) [DWO7]. Unlike Fig.2.9 (where
we consider only rotational motion), Fig.3.2 vessels have both translational and rotational

motion.

Using the neighborhood transitions specified in Fig.3.2, we can build the transition
graph of rule compliant behavior for each configuration. In this step-by-step transition
graph, spatial transformations from a potential-collision state to a safe state can be deter-

mined.

3.1 Modelling Rule-Compliant Behavior

[DFW*07] describes rule-specific transition graphs which have the OPRA, relation be-
tween the vessels as nodes and rule-compliant actions as edges. The transition graph shown
in Fig.3.3 is a transition sequence which specifies a prototype of the rule compliant actions
from a potential collision state to a safe state. A typical configuration like head-on directs
both the vessels to turn starboard . When they are not head-on anymore, they can go mid-
ships, and when they are just about side by side, they can furn port, heading back to their

original course.(See Fig.3.3)

418 is considered a potential collision state (head-on) and 41‘4‘ is a safe state (side-
by-side). When two vessels have the relation 418 , the rule-compliant action is (S, S). The
OPRA, relation after committing the specified action will be, 4] as shown in Fig.3.3. It
means, when two vessels have an OPRA, relation of 4/, and both vessels turn starboard,
the succeeding relation is 4/;. Similarly when the relation is 42, and both vessels keep
midships (don’t alter direction), the succeeding relation is 413. Since 415 is an exact relation
and unstable, it almost immediately becomes 41§. Finally, both vessels furn port (turn left),

the two vessels are side-by-side and the relation is (A4 AjB), a safe state.

But the transition graph in Fig.3.3 is an idealized transition sequence. Fig.3.4 gives
the actual transition sequence that may take place. The colored nodes indicate the idealized
thread for OPRA, transitions as represented in Fig.3.3. The start state of 418 marks exact

(or linear) regions. Since we consider the vessels to be 2D oriented points, exact relations
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Figure 3.3: Idealized transitions for Head-on in OPRAs: A4/)B — A4Z{B — A4/3B —
A4Z§B - A4ZjB

are unlikely to occur and are unstable. This leads us to consider the neighboring relations
of 420, {425, 4213, 423>, 423,42, }, as the representation for head-on. Similarly, the safe-sate
423 is also a exact relation and hence unstable. In practice we see its neighboring relations

{4Z§, 4Z§, 412}-

Assuming the velocity is same for both vessels, we expect that the resulting re-
lation is at least a conceptual neighbor of the idealized relation. Depending on various
parameters like position, velocity etc., of the vessels, the same action may lead to different
relations with respect to the conceptual neighborhood graph. Hence, there is a necessity to

incorporate the conceptual neighbors of each relation from the idealized thread.

The actual transition graph is better represented by Fig.3.4. The colored nodes
represent the idealized transition sequence. Note that Fig.3.4 is only an approximation of

the transition graph. For a more comprehensive graph, refer to [DFW*07].

To avoid the problem with exact relations like 29, k-OPAA contains only interval
relations. Let us consider 6-OPAA[15, 45,120,240, 315, 345](Fig.3.1) for the same appli-
cation. With k-OPAA the front of the object is not represented by a line but by a region.
Head-on is represented by the k-OPAA relation /). and the safe state is Z3.

Fig.3.5 represents the idealized transition graph of k-OPAA relations for the head-
on configuration. The unique advantage of using k-OPAA is that there are no unstable exact
relations. Hence the idealized transition graph is the closer to the transitions actually seen
in practice. k-OPAA also gives the advantage of having a fine granularity for the front and a
coarser granularity for the back. The granularity of each direction can be chosen depending

on the application.

We now use the step-by-step transition graphs to describe the rule compliant be-
havior of two vessels in a particular configuration. As we have identified in the previous

section, £ and /3 represent the potential collision and the safe states respectively. Fig.3.5
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Figure 3.4: Actual Transition sequence of rule-compliant behavior for Head — On using

OPRA, (approximation from [DFW*07])
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Figure 3.5: Idealized transitions for Head-on in 6-OPAA[15, 45, 120, 240, 315, 345]: AAgB
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Figure 3.6: Actual Transition sequence of rule-compliant behavior for Head — On using
6-OPAA[S,45,120,240,315, 355]

represents the idealized thread of the transition sequence. While the idealized thread is
temporally complete, it is not a suitable formalization of all the possible relations that may
occur while committing rule-compliant actions. As shown in Fig.3.2, the transition from

one relation to another based on actions is non-deterministic.

The transition graph in Fig.3.6 is a more comprehensive picture. This graph shows
the relations that might exist when two vessels exhibit rule compliant behavior for the head-
on configuration. The colored nodes in the transition graph represent the ideal thread. For
each of the neighborhood relations, we derive actions which will lead us back to the ideal

thread to maintain rule-compliant behavior.

3.2 Software Architecture

See Fig. 3.7 for the basic architecture. In this project we have used three main components

e Sailaway simulator:- Supplies the exact positional information of the vessel in the
simulator to Golog Decision Agent. The simulator also receives the commands from

the Decision Agent.
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Figure 3.7: Architecture of Software

e SPARQ :- Converts the positional information into an k-OPAA binary relation and

this information is sent back to Decision Agent.

e Golog Decision Agent :- Each vessel has its own Decision Agent. Using the k-
OPAA binary relation the current spatial situation is mapped to a certain rule in the
rule set and the corresponding decision is made. The decision is then supplied to the

Sailaway simulator.

3.3 Golog Decision Agent

The Golog Decision Agent uses 6-OPAA[15,45, 120,240,315, 345] to map each situation
to a certain configuration and then make the corresponding decision. The configuration
Head-On, in 6-OPAA is represented by /). The relation /] is mapped to the corresponding

configuration. The actions associated with this configuration will be implemented.

The decision agent is coded in Golog. The requisite code is:

proc(motor_kopaa(Vl),
[if([V2,Rel,Rel_P1,Rel_P2] = ecf_collissionWith(getOwnName),
if(rule_kopaa(Rel_P1,Rel_P2,2,ecf_vesselType(V2)) = H,
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/*head_on, rule H*/
send( V1, s), /* V1 turn starboard */
if(rule_kopaa(Rel_P1,Rel_P2,2,ecf_vesselType(V2)) = C1,
/*on left, rule Cl%*/
send( V1, m), /* V1 keep midships */

There are different vessel types, Sport vessel, Motor vessel, Sail vessel etc. Each
type of vessel has its own set of rules. This segment of code basically uses the 6-OPAA
to decide whether the potential collision is on its front or left and takes the corresponding
decision depending on its colliders’ vessel type. Here we receive the information about the
6-OPAA as an exogenous fluent in line 2. An exogenous fluent is a sensor value which
is taken from the external environment. In line 3, we test whether the given configuration
falls under Rule H (head-on). If true, we ask the vessel to turn starboard. In line 6, we test
whether the given configuration falls under Rule C1 (vessel approaching from left). If true,

we ask the vessel to keep midships.
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Chapter 4

Conclusion

Oriented points are an abstraction for describing objects which have an intrinsic front.
We have presented a novel calculus, k-OPAA, for reasoning about the relative orientation
using only angular intervals (sectors); the intent behind this is to enable cognitively attested
tolerance intervals to be associated with exact relations, instead of being incorporated as
extra-theoretical entities at implementation time as with other calculi. In order to determine
the extent of some of these tolerances, a simple experiment was conducted on a group of

20 subjects.

We demonstrate that k-OPAA is a relation algebra in the sense of Tarski and de-
fined the constraint satisfaction problem in this context. A tractable subset of the set of all
relations was identified. We also looked at some example application of Qualitative Spatial
Reasoning with k-OPAA, comparing it with other models. Also, in cognitive experiments,
and also in implementations as in robot navigation, spatial regions are not crisp, but are
graded (or fuzzy) at the boundaries. Nonetheless, the neat discretizations here, or in other
JEPD calculi, may form a theoretically sound skeleton on which other relations can be de-
fined. It would be important in future work to consider building the model (especially the

transition algebra) in a probabilistic framework.

In the analysis here, no thought has been given to distance. In much spatial reason-
ing, distance and orientation are thought of as orthogonal[MRO8] - so that the orientation

relation remains unaltered with distance, but this is not the case; often the angular zones
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corresponding to similar degree of “frontness” may shrink as distance increasesf MGNEOO].
Also, at distances larger than a certain influence zone, the spatial relation is often not per-
ceived as being “Front”, etc., indeed here also there may be some asymmetry between

different orientations like “front” and “back”.

Another difficulty with incorporating distance into such a calculus is that the notion
of qualitative distance is often a function of object size, which is abstracted away in the

point object assumption.

In terms of applications of spatial calculii, we feel k-OPAA is perhaps somewhat
better suited to real life situations than other calculi owing to its explicit provision for

tolerancing, and also the handling of asymmetric angular sectors.

Among other theoretical aspects, we have not identified the maximal tractable sub-
set for the calculus. Some algorithms to find the tractable subsets have been provided by
[Ren07]. Another area of exploration may be to consider introducing a temporal dimension
to k-OPAA - 1.e. to consider the transition sequences as atomic events, and considering how

these would build up to larger processes, perhaps with associated probabilities.
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