Proceedings of IDETC/DTM 2009

ASME 2009 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

August-September 30-2, 2009, San Diego, CA, USA

DETC2009-86709

THE BIRTH OF SYMBOLS IN DESIGN

Amitabha Mukerjee*
Computer Science & Engineering
Indian Institute of Technology Kanpur
Uttarpradesh, Kanpur, India
Email: amit@cse.iitk.ac.in

DRAFT PAPER

ABSTRACT

In the widespread endeavour to standardize a vocabulary
for design, the semantics for the terms, especially at the detailed
levels, are often defined based on the exigencies of the implemen-
tation. In human usage, each symbol has a wide range of asso-
ciations, and any attempt at definition will miss many of these,
resulting in brittleness. Human flexibility in symbol usage is pos-
sible because our symbols are learned from a vast experience of
the world. Here we propose the very first steps towards a pro-
cess by which CAD systems may acquire symbols is by learning
usage patterns or image schemas grounded on experience. Sub-
sequently, more abstract symbols may be derived based on these
grounded symbols, which thereby retain the flexibility inherent in
a learning system.

In many design tasks, the “good designs” lie along regions
that can be mapped to lower dimensional surfaces or manifolds,
owing to latent interdependencies between the variables. These
low-dimensional structures (sometimes called chunks) may con-
stitute the intermediate step between the raw experience and
the eventual symbol that arises after these patterns become sta-
bilized through communication. In a multi-functional design
scenario, we use a locally linear embedding (LLE) to discover
these manifolds, which are compact descriptions for the space
of ”good designs”. We illustrate the approach with a simple 2-
parameter latch-and-bolt design, and with a 8-parameter univer-
sal motor.

*Address all correspondence to this author.

Madan Mohan Dabbeeru
Center for Robotics
Indian Institute of Technology Kanpur
Uttarpradesh, Kanpur, India
Email: mmadan@iitk.ac.in

1 Efforts towards standardizing the design vocabu-

lary

Evolving a standardized vocabulary for design has emerged
as an important focus in engineering design with a need for com-
municating between differing systems and design groups. Pos-
sible applications include developing design repositories [Bohm
et al., 2005, Nanda et al., 2007]], computer assisted conceptual
design [Gorti and Sriram, 1996||Campbell et al., 2000, Kurtoglu
et al., 2005], [Chakrabarti et al., 2005,|Gero and Fujii, 2000],
etc. It is clear that vocabularies are structured, that is there are
considerable relations between terms. Often, this is viewed as
an ontology or as a structured relationship that captures a part of
the semantics of these terms. One popular view of the engineer-
ing system considers the flow of energy, information, etc, and
proceeds downward into detailed design. With its roots in value
engineering ideas from the 1940s, these notions were seeded by
the analysis in Pahl and Beitz [Pahl and Beitz, 1996] and a partic-
ularly influential study by Welch and Dixon [Richard and Dixon,
1994], leading to modern ontological models like the widely used
functional basis model [Hirtz et al., 2002] or implementations on
ontology tools [Nanda et al., 2007,|Szykman et al., 2001].

1.1 The semantics of design symbols

All these models define a number of symbols at different
levels in the hierarchy. Unfortunately the term “symbol”, as it
is used in the logic and computational community is consider-
ably different from its usage in cognitive linguistics and in every-
day life. In the latter usage, symbols are imbued with meaning
grounded on experience, whereas in the formal usage, it is merely

Copyright (© 2009 by ASME

Communication

Design

g — Pattern1 (Phonological pole)
Exp.1 \ l
Design term

— Pattern2 —» Chunk—Image schema —»

Exp. 2 (Semantic Pole)

/ Image schema
Design
Exp.3 —Pp Pattern3 Symbol

Figure 1. Emergence of symbols based on experience: Often the
same abstract pattern (or chunk) appears in many experiences (e.g. the
notion of “fit” for peg in hole, bolt in latch, plug in sink, etc.). If a chunk is
valuable in compactly representing many situations, it has a higher like-
lihood of being communicated, thus acquiring a phonological pole and
becoming a symbol. A symbol can then form other associations besides
the initial chunk, all of which together constitute its semantic pole or im-
age schema.

a token constructed from some finite alphabet, and is related only
to other terms. If we may present an analogy, the symbol “red”
as it is used in a computer, is akin to the understanding of the
symbol by a blind man; he knows that it is a “colour” (whatever
that may be) and that “green” and “blue” are other colours, and
maybe even that “crimson” and “vermilion” are shades of “red”,
but his understanding of red is dramatically different from that of
a sighted person, because the semantic pole is not connected to
direct experience.

On the other hand, “symbol” has come to be understood in
cognitive science (and also traditionally in linguistics, e.g. de
Saussure ([De Saussure, 1986]), as the tight binding of the of the
psychological impression of the sound (the “phonological pole”)
with the mental image of the meaning (the semantic pole) [Lan-
gacker, 1986]. The mental image or image schema includes all
sorts of associations and is somewhat different for each user,
though social convention ensures a degree of overlap between
mental images within the language community.

However, the notion of symbol is more far-reaching than
communication. It turns out that to some extent, the symbols
help divide up the world into chunks, and eventually, it may re-
flect changes in how we think. As an example relevant to the
design community, we may mention how the Korean language
makes a distinction between spatial tight-fit situations, kkita, (as
in “put the cap on the pen”, “hand in glove”) from other usages
of “in” or “on”. Infants growing up in English and Korean lin-
guistic environments were sensitive to both contrasts, but English
children appear to lose this sensitivity around the time they start
acquiring language, suggesting that the language construct may
have weakened their sensitivity to these changes [McDonough
et al., 2003].

depression High
level

Image 4

is- is-a
is-a

dent slot slit

Low
level

Image 1 Image 2 Image 3

Instance level

Figure 2. Abstraction starts with ground instances: Each symbol
in this hierarchy has a term or label (“dent”, “slot” or “slit”) and a corre-
sponding abstract pattern or “image schema”. The image schema is used
in identifying an instance as belonging to a symbol category, but also
in composing symbols, and in interpreting higher abstractions. Primitive
design ontologies are born is-a through usage; when instances already
known as dents or slots are also labelled as “depressions” by a trusted
user, the system learns the subclass relationship. This makes grounded
instances available even for the more abstract symbols. Similarly, other
relations e.g. “dents are generally undesirable” would also be learned
through usage and become part of the image schema. The number of
such associations for each symbol is often very large, and limiting these
to a few user-determined definitions is a major contributor to brittleness in
knowledge systems.

Symbols in CAD systems are not completely devoid of the
semantic pole, indeed, implemented systems usually instantiate
these symbols in terms of geometrical or physical attributes, but
these details are largely implementation specific, heuristic, and
are often not transferable to new domains. At the higher, or ab-
stract levels in the design hierarchy, there may be some agree-
ment on terms but as these get instantiated into specific instance,
many definitions tend to be simplistic or even arbitrary. In many
situations, the same physical and geometric symbol may require
different instantiations in different domains, which is akin to the
notion of polysemy in language (e.g. a “slot” on a coin-machine
vs a “slot” on a machining fixture). These type of situations
are almost impossible to program, since the range of usage very
large, and may even be unbounded.

On the other hand, incompatibility of design vocabulary is
rarely a problem between humans (that’s why exceptions often
become memorable). If designers A and B are talking, and A
does not have a particular symbol, its image-schema may emerge
through a small amount of discussion; in many cases, just a single
example may be enough to stretch an existing concept in A to the
current one. Of course, this new symbol remains a bit wobbly,
and designer A is aware of it, and subsequent uses of the symbol
will serve to ground it. All this is possible because the semantic

Copyright (© 2009 by ASME

pole for the human is a complex, elastic set of associations that
cannot be defined in terms of a single predicate or even a range, it
is the set of all situations where the symbol may be encountered
(figure[2). All these associations need to be learned, and cannot
be inferred based on a single definition (not to mention issues
such as nonmonotonicity); hence the programmer-given single
definition, usually created to demonstrate the example at hand, is
a hopelessly inadequate semantics for a design symbol; and that
is why we need bottom-up symbol discovery in order to ground
a design vocabulary.

1.2 Bottom-Up Semantics in design

An alternative that has been proposed for modeling design
concepts is to attempt to move more towards the human process,
to learn symbols based on design experience [Gero and Fuyjii,
2000]. The human design process is a constant, motivated ex-
ploration of the design space, e.g. through sketching. All the
while, the designer is focusing on the designs that are “good”
in some functional sense, and eventually, some kinds of patterns
emerge as the common characteristics of these designs. This is
one sense in which sketches “talk back” to the designer [Gold-
schmidt, 2003]]. These patterns result in constraints whereby
many of the initial design variables can be combined, a process
cognitively known as chunking |Gobet et al., 2001].

Considering the task of designing a padlock, we may learn
that in a padlock, to balance the strength in its components, the
shackle diameter increases roughly in proportion with body size.
Thus these two parameters can then be brought down to a sin-
gle chunk. Some other parameters also follow this trend, and
also become part of this chunk. Thus, this enables the expert de-
signer to consider a wider range of variables, than would have
been possible initially. It is well known that a designer who is
an expert in a particular design domain is “confident of imme-
diately choosing a good [design] based on experience” [Gross,
1986]], and this is partly possible because of these patterns that
she has internalized. Often, these relations remain implicit, so
that the human designer justifies the decision vaguely as “looks
right” [Ahmed et al., 2003]]. However, if these patterns do cross
the consciousness boundary and get explicitly noticed, the de-
signer may recognize it as an “aha!” moment.

An early attempt at discovering patterns in the design space
of shapes may be seen in relation to 2D shapes in the work
of [Park and Gero, 1999||. Another interesting approach to learn-
ing some of the semantics is found within the tradition of design
knowledge ontologies [Moss et al., 2004]]. Here a learning layer,
operating as a manager (M-agents), are added to a system being
used to create designs. The M-agents consider the good designs
that have come up, and try to identify some trends. These can
then be used to extract chunks which are added to memory, and
become part of the variable space. Further, the effectiveness of
a new chunk can be tracked in subsequent designs to ascertained

its utility.

Recently, an interesting approach to uncovering semantic
connections that relate design variables with parameters has
been proposed by [Sarkar et al., 2008, which considers the co-
occurrence matrix of variables and constraints. Performing a
Singular Value Decomposition on this matrix, one can use the
ordered eigenvalues as an indication of the relevance of the re-
lations between different variable groups. This provides a sig-
nificant step in permitting designers to identify which variables
to keep as design variables (as opposed to relegating it as a de-
pendent parameter). By limiting one’s attention to the top few
eigenvectors, one can also achieve a significant reduction in di-
mensionality.

1.3 Emergence of design concepts

None of these proposals however learn the concepts under-
lying the symbol (the semantic pole) in a grounded manner,
and therefore lack the flexibility of the human designer. By
grounded, we refer to the progressive manner in which a human
designer learns her concepts - the more abstract ones are based
on earlier, concrete concepts, but are still presented through in-
stances. In the end, many concepts are grounded in terms of
a number of experiential instances. For a human designer, this
learning is not limited to the years of training as a designer, but
must include all of her knowledge about the world, the so called
commonsense knowledge. Thus, the fact that a fat peg will not
go into a thin hole is part of her prior knowledge. Indeed, it is
likely that the process by which she acquires these patterns, built
upon many layers of pre-existing knowledge, may be similar in
some salient ways with her earliest learning.

In this work, we propose to take the first step towards build-
ing this grounded semantics, which we call the birth of symbols.
We adopt the cognitive interpretation, taking a symbol to mean
the tight binding between a label and a large set of consciously
accessible experiential patterns. The label is usually a commu-
nicative term, and constitutes its phonological pole. Occasion-
ally, however, for example while “talking” to a sketch, a designer
may get a conscious awareness of a constraint without verbaliz-
ing it - and these may also be a kind of symbol. Later, it may
be verbalized, and acquire a name. The conscious awareness
process (called reification results in a new symbol. At the same
time, amorphous implicit schemas, which are formed subcon-
sciously (e.g. [Gladwell et al., 2005] are incipient symbols, but
not quite there yet. Still, they are useful, and we do use them, but
they need to prove their mettle before they become true symbols.
This interpretation is in line with a long tradition in psychology
and linguistics [Mandler, 2004]].

In the computational version of this learning process, we use
several learning paradigms. One learning process, based on the
training data of “good designs” is a simple general purpose func-
tion approximation - we use a single layer perceptron [Bishop,

Copyright © 2009 by ASME

2006]. Such function learners, while they can learn the patterns
for “good designs”, are not capable of the information compres-
sion that is necessary in birthing symbols. There are several ap-
proaches that find such data encapsulations - when the clustering
involves convex (linear) combinations of the variables, one may
use PCA. Where the patterns sought are non-linear (imagine the
spiral layer of jam in a swiss-roll), then these are better learned
by a number of non-linear manifold learning techniques; here we
use the well-known Locally Linear Embedding (LLE) [Saul and:
Roweis, 2003]].

Since we are concerned with discovering patterns that ap-
ply to the set of good designs, we must have a way of assessing
whether a design is good or not. This implies that some set of
functional criteria must be available; even if it is not quantitative,
it must be capable of ordering a wide variety of design instances,
and given a design instances (a set of values for the design vari-
ables) it must be possible to determine the degree of functional
feasibility. Such a model of function is usually not available in
the very earliest stages of design; indeed even for human design-
ers, insights usually arise while fiddling with instances, when
suddenly a pattern may light up. So we are considering this type
of emergence only after an embodiment is available, when the
nature of its function can be related to the set of design variables.
As in [Moss et al., 2004] we consider “good designs” as those
arising from multi-criteria optimization or based on user-defined
minimal functional criteria.

The next sections outline the development of the infant de-
signer into a (very) early designer; the idea is that computational
models capable of human-like ability would be possible based
on the equivalent of years of exposure to such situations. In the
end, we may expect to have a grounded symbol system that can
reason about the flow of energy and take it down to a detailed
design, but that end, even if it is achievable, is clearly far away.
At present, let us start with the infant designer.

2 Infant designer

An infant designer is really the baby who is first discover-
ing regularity of object behaviour in the world and is one who
is just beginning to form her knowledge of the world. She can
make various choices, and evaluate them based on some notion
of function. Considering the peg-in-hole task alluded to, we see
how she might learn the concept that a peg must be smaller than
a hole.

The functional model considered is simple - the design is
functionally feasible if the peg can go in (actually our system
computes the configuration space - the penetration region disap-
pears when w(t - but this is not relevant here). We consider a
horizontal version of the peg-in-hole - a latch is entering a slot
on a bolt, say. Figure [3|shows how after evaluating a number of
instances in the design space of latch-widths w and slot-widths
t; in (w,t) space, a clear 45 degree line emerges, separating the

(d) 200 instances

(¢) 50 instances

Figure 3. Learning through experience that latch-must-be-
smaller-than-slot (w > t). (a) A latch of thickness ¢ is fitted to a slot of
width w. The learned patterns are shown in (w,)-space in (b)-(d). The
quality of the learned pattern varies greatly with degree of experience: re-
sults shown for a multi-layer perceptron after experiencing 10,50, and 200
design instances.

“good designs” from the bad.

Does this constitute symbolic knowledge for the infant de-
signer? Most likely not. However, it is something that might
become a symbol as she acquires other concepts that she can re-
fer to. An important aspect of symbols is that they are defined in
relation to other symbols, e.g. if we consider vocabulary A which
has both the terms “slot” and “slit”, versus system B, which has
only “slot”, then we might expect the semantic pole of “slot” to
more narrowly defined in A than in B. Similarly for the infant,
it needs a certain density of putative symbols before making the
symbolic jump.

What is interesting in the results of figure 3| is how, after
experiencing just a few instances, the pattern is inchoate, so the
baby keeps trying to insert fat pegs into the thin holes, filling up
the negative (black) area of the figure. Eventually the defining
boundary becomes sharper, and at some point it can be said to
knows the principle, at least implicitly.

At the next step for our infant designer, we consider the con-
cept that a designer knows as “fit”. By now our infant learner
will attempt to insert pegs only if they are smaller than the slot.
The functional definition for the degree of fir may be: how much
does it wiggle? Defining the wiggle in terms of the area of the
free-space in the configuration space, we see that if the wiggle
desired is very small, we get the situation on the left, and if it
is very large, we get the situation on the right. Eventually, the
learner learns the concept of “fit” as a chunk (composed as w —¢)
- thus, given a level of fit, it imposes a constraint where w and ¢

Copyright (© 2009 by ASME

— | |

Tight fit Medium fit Loose fit

10y

W=t
feasible
+ infeasible

=—w=t
feasible
+ infeasible

W=t
feasible
+ infeasible

-15 0 15 -15 0 15 -15 0 1.5

Figure 4. Birth of the image-schema for “fit”: Aninsertion task with
different kinds of fit are shown in the top row and the corresponding design
spaces (w,t) with feasible and infeasible regions are shown below. The
function is given as the amount of play available (amount of free-motion
or wiggle). If the desirable wiggle is specified, the two-dimensional design
space is effectively reduced to one since a relation emerges between the
feasible w and ¢. This mapping or image schema is a early prototype of
the concept of “fit”.

are related in a manner where they constitute a one-dimensional
chunk instead of two independent variable.

Of course, from a machine learning perspective, both these
examples are rather elementary. Our objective in presenting it is
merely to emphasize the role of even the earliest knowledge in
many advanced design situations. These two concepts are also
among our earliest knowledge achievements; typically, infants
learn containment (peg in hole) by about 3 months, and tight
vs loose by 5 months [Casasola et al., 2003]]. Many cognitive
scientists believe that our concepts of abstraction, including the
is-a construct used in ontologies, is a metaphorical extension of
containment [Lakoff and Johnson, 1999].

3 Symbol emergence

As the designer matures from infancy, we can consider the
more general process by which symbols form. These correspond
to the stages shown in figure [5} At first, the designer explores
with instances in the design space, distinguishing the good de-
signs from the bad. Eventually a region in the design space
emerges as that containing mostly the feasible designs - this is
the Functionally Feasible region (FFR), or the space of “good
designs”. At least implicitly, this region is being continuously
abstracted in terms of function. If the region is a very simple,
one may even get an explicit characterization for it. However, in
many high dimensional design spaces (even in the §-dimensional
example next) such relations are far from obvious.

The other interesting aspect of the FFRs is that they often

Functional p
feasnbllnty attern Learned
learning Pattern
Desngn Space >

Reification Symantic pole

>

Phonological pole

Symbol

Manifold space

Figure 5. The symbol emergence process: our main interest is to
discover and learn structural or behavioral chunks that result in good de-
signs, corresponding to functionally feasible regions (FFRs) in the designs
space. FFRs typically reflect multiple functional criteria, and may be ob-
tained from some approximate optimization, or from user specified min-
imal functional criteria. A set of FFR instances can be used to learn a
pattern of functional feasibility, the quality of this pattern improves with
experience as earlier. Once the FFR is sufficiently rich, one may also dis-
cover that they lie along some low-dimensional manifold (R‘l) embedded
in the high-dimensional design space RP (d < D). The lower dimen-
sional space is then a chunked representation for the initial design space.
If this relation becomes conscious, it may then become a design symbol.

correspond to narrow bands of functional feasibility. This may
be because they are the result of (possibly subconscious) multi-
objective optimization - thus, if there are k design objectives, then
they constitute a kK — 1 surface in the objective space. When the
function measures that map from the design variable space to
the objective space are at least continuous, their Jacobians would
be well-posed, and the near neighbours in the objective space
may correspond to near neighbours in the design space. If this
holds, we may expect the designs to lie along a k — 1 surface (or
“manifold”) in the design space as well (shown as a folded patch
in the figure). More generally, the mapping from the design space
to the functional objective space is not so well-posed, but the
dimensionality reduction, while not quite as pronounced, may
still be very significant.

Each dimension in this reduced dimensional map reflects
an inter-relation between many independent design parameters.
Subsequently, many other design situations also reveal such re-
duced dimensional hyper-surfaces, with different dimensionali-
ties. Some of these reduced-dimensional mappings or chunks
may recur in other situations - this makes the chunk useful, which

Copyright (© 2009 by ASME

is an important criteria for becoming a symbol. In the interim, the
designer may use these chunks with a dim awareness of it for a
long period, even several years. Meanwhile, as other instances
are being explored, and the confidence in the manifold mapping
increases, the designer may eventually articulate it (at least to
herself), which would be the birth of a true symbolic representa-
tion for this concept. At this point, a label may get attached to
it, and many other associations would eventually accrue to this
term / image-schema pair; it would then constitute a truly reified
symbol in the cognitive sense.

In our computational analogue of this process, a key step
is that of discovering the lower-dimsnsional patterns; this is the
algorithm we describe next. This algorithm will then be applied
to a well-known design problem, to obtain chunks.

3.1 Dimensionality Reduction

We now present the algorithm used for obtaining a low-
dimensional representation for the “good design” subspace of of
the original high-dimensional design space. As noted above, the
number of functional objectives is usually much less than the
number of parameters in the design space. For example, a dig-
ital camera (in terms of all its components, and assembly pro-
cesses) may have several hundred parameters, but only about ten
functional measures. Based on these functional measures and
the constraints among the design parameters, the good designs
may be constrained to a much lower dimensional manifold in
the design space. Thus, although the design is defined in terms
of a hundred parameters, for the class of “good designs”, there
are often many interrelations between these; each such inter-
relation constitutes a chunk or a dimension in the resulting low-
dimensional surface or manifold.

Dimensionality reduction techniques attempts to find low-
dimensional structures in high-dimensional space, using a large
variety of approaches. There have been linear dimensionality
reduction methods [Bishop, 2006] - e.g. independent compo-
nent analysis, linear discriminate analysis, principal component
analysis. These linear methods fail when the data lies on a non-
linear manifold; in such situations the linear algorithms give the
smallest convex subspace encapsulating the manifold, which is
often of a much higher dimension. In practice, non-linear re-
lations between design variables are extremely common, and in
such situations, nonlinear dimensionality reduction yields supe-
rior results [Tenenbaum et al., 2000]. Approaches for obtaining
the non-linear representation of the data include global meth-
ods (Isomaps [Tenenbaum et al., 2000], Laplacian Eigenmaps
[Belkin and Niyogi, 2002]) and local methods (Locally Linear
Embedding [Saul and Roweis, 2003]]. Local approaches try to
preserve the local geometry of the data. By approximating each
point on the manifold with a linear combination of its neighbors,
and then using the same weights to compute a low-dimensional
embedding, LLE tries to map the nearby points on the manifold

to nearby points in the low-dimensional representation.

Algorithm 1 Local Linear Embedding [Saul and Roweis, 2003|]

I. Compute the neighbors X; of each data point,X;.

2. Compute the weights W;; that best reconstruct
each data point X; from its neighbors, minimizing
the reconstruction error (e(W) = Y;|X; — ¥;Wi;X;[*) by
constrained linear fits.

3. Compute the vectors I} best reconstructed by
the weights Wﬁ, minimizing the quadratic form
(er) = YL - ZjWhFﬂﬁ by its bottom nonzero
eigenvectors.

The Locally linear Embedding (LLE) is an eigenvector
method for the problem of nonlinear dimensionality reduction
(algorithmm [Saul and Roweis, 2003|[Roweis and Saul, 2000]).
The assumption underlying LLE is that the manifold embedded
in a high-dimensional space is locally linear if each data point
and its neighbors lie approximately on a locally linear patch on
the manifold (the manifold considered to be hyper-flat locally).
Thus each data point can be approximated as a weighted linear
combination of its nearest neighbors. The weights or coefficients
of this approximation characterize the local geometries in a high-
dimensional space. The key insight is that for a true manifold, the
same weights would also apply in the low-dimensional mapping.
This can then be used to find low-dimensional embeddings pre-
serving the relative weights in its neighbourhood. In this study,
we use LLE to identify the underlying non-linear manifold in
high-dimensional design space.

3.2 Universal Motor example

Next we consider a well-known problem in the design litera-
ture, that of designing an Universal Motor. The Universal Motor
is a motor with a wound armature and a wound stator. The ar-
mature is fed via brushes on a commutator, and is essentially the
same as a D.C. motor. The universal motor operates off a single
phase A.C. supply and accelerates until the load torque equals
the output torque. Such motor are used from home appliances
like domestic vacuum cleaners, food processors, mixer grinders
to industry applications like material handling, power sector mo-
tors. Universal motors have been well studied in the product
family design literature [Simpson, 1998]], where the physical de-
scription and schematic of the universal motor have been pre-
sented. The design space for embodiment design consists of 10
design variables V = {N;, Ny, Ava,Awf,To,t,lgap,1,V;, L} where
N,: number of wire turns on the armature, N;: number of wire
turns on each pole on the field , A,,: cross-sectional area of the
wire on the armature, A,,s: cross-sectional area of the wire on
the field, r,:radius of the motor, ¢: thickness of the stator , I: cur-
rent drawn by the motor, L: stack length, and the performance

Copyright (© 2009 by ASME

&

-
[N

'II
'I
'I'Il
]
e10 I‘I“I
:
3 S
w
If
4A-mu|||uu|lllll""""“"""”"“ll
10 15 20 25 30 0 15 20 25 30
Stack Length (L) Stack Length (L)
(@) (b)
A B C
—_— 0 QE—

©

Figure 6. Chunking on the L,I subspace for Universal Motors:
(a) The implicit constraint on the L,/ subspace of the Design Space is
learned for 2000 design instances under the functional specification 280
W< Tpower < 295 W. (b) The feasible designs in the L, I subspace, in
which each design instance can be identified based on two parameters L
and 1. This subspace is mapped into a low-dimensional (one-dimension)
shown in (c). A,B, and C are three different design instances mapped
from L, I space to one-dimensional space.

behaviors are taken as strength, mass, energy and efficiency
and the corresponding performance metrics interms of these de-
sign variables can be Torgue (V) = N%b[, Tnass (V) = Mass,vindings +
massgrmature + massSwyindings 7'|:power(‘_;) =ViI- r (Ra + Rs) -2,
and T ficiency(V) = % The derivation and the related equa-
tions are presented well in [[Simpson, 1998]. And the main con-
straints we considered here for the feasible motors are (i) the
magnetizing intensity H < 5000 and (ii) the outer radius of the
stator r, must be greater than the thickness of the stator 7.

We first proceed with the same learning process as earlier,
where we are abstracting the design experience in terms of pat-
terns of FFRs. These learned patterns can be used in future
design tasks of similar designs. A minimal parameter set for
the universal motors may be considered in terms of the two de-
sign parameters L and I, while keeping other parameters con-
stant [Simpson, 1998]. To obtain the feasible universal motors
for the desired functional range of power 280 W< T,4yer < 295.
Figure [6(a) shows the result of learning the FFR (the valid de-
signs resulting from this constraint). These lie along a small
band, which can be thought of as a curved 1-D manifold (with
a slight thickness). [f[b).

Next, we demonstrate the manifold nature of the FFR us-
ing the eigenvector method called locally linear embedding or
LLE, explained in the next section. The mapping between the
nonlinear feasible region (Fig. E] (b)) and the one-dimensional
chunk for it below (Fig. [6] (c)) shows the continuity of mapping
between these. If we take three data points A,B, and C in L,/

X r

L(m) | I(Amp) Y Torque | Tomass T power TLef ficiency
(Nm) (kg) W)

A 32.0 4.0909 -0.2102 | 0.2643 | 0.8428 | 280.4795 | 0.5962
22.5 3.5455 -0.1430 | 0.6815 | 0.7613 | 289.1254 | 0.3580
C 10.5 12.000 0.0077 0.7462 | 0.4048 | 282.8583 | 0.2050

w

Table 1. Lower dimensional FFR: To map these FFRs in L, I space
to Y space we have used local linear embedding algorithm (shown Al-
gorithm [1) with three nearest neighbors (K=3) for each data point in X
space. All data points are mapped from Xpyn to I'yxn, where D is the
dimension of the L, I space (D = 2), d is one-dimensional Y space and
N is the number of data points. Three data points A, B and C are showing
mapping from L, I space to 'Y space.

space. Let us say X = [A B C], each data point is a real-valued
vector, with of dimensionality 2. With the help of Local Linear
Embedding (LLE) algorithm [Roweis and Saul, 2000]], we con-
struct a neighborhood preserving mapping from L,/ space to I.
The particulars of these three points mapping is shown in Table.
[

After this y chunk is discovered in this Universal motor sit-
uation, it is possible that it may also emerge in other situations.
If so, a designer may communicate the idea of this chunk to an-
other; let us say he calls it “gavagai”. Then as the term “gavagai”
spreads in the design community, it would occur in many other
situations, and each association would form part of the semantics
of the term gavagai.

Indeed, different generations of designers would discover
their own image schemas for gavagai, and the term may be ap-
plied to wider contexts (“‘generalization’) or more specific ones
(“specialization”); thus, it would slowly change its semantics
over time. This is another way in which static programmed ma-
chine semantics, even if they can capture all the usages at a given
point of time, would not be able to keep up with human usage
unless it adopts an experiential learning modality as proposed
here.

4 Chunking from Multi-Objective Optimization

Until now, we have considered the FFRs as arising from user
defined functional desiderata. However, how does the user arrive
at these functional bounds? In practice, a more useful approach
towards finding FFRs is to consider them as the estimated pareto
fronts arising from Multi-objective optimization. This reflects, in
a very approximate manner, the human designer’s search for op-
timality, or at least some degree of optimality, in complex design
spaces.

Here, we need not know the bounds on the performance, just
the set of performance measures, computable given an instance
of the design, are to be specified. In general, we consider the

Copyright (© 2009 by ASME

design problem as one of balancing multiple objectives, some of
which may be conflicting. If a solution A is better than solution B
in all the functional criteria, we say that A dominates— B. If a so-
lution is such that no other solution dominates it, then it is a pos-
sible optimum, the set of all such non-dominated solutions (the
pareto-front), usually lies along a surface in the space of objec-
tive functions; if there are k functions and these are independent,
then the dimensionality of this surface is k — 1. Most compu-
tational multi-objective optimization (MOO) algorithms provide
estimates for the non-dominated front.

For our purposes, the non-dominated front constitutes a de-
scription of “good designs”. The front is obtained in the space of
objective functions, and our first task would be to map it to the
design space. We would then consider these “good designs” in
the design space and try to find a manifold representation for it.

4.1 Example A : Universal Electric Motors

Let us now formulate the design of Universal motors as a
multi-objective optimization problem to identify FFRs. Here we
consider eight design parameters V = {N¢,Ny,Aya, Ay f,Fo,t,1,L}
and their ranges are, N.: number of wire turns on the armature
[100,1500], Ny: number of wire turns on each pole on the field
[1,500], A,y,: cross-sectional area of the wire on the armature
[0.01,1.0mm?], A,,f: cross-sectional area of the wire on the field
[0.01,1.0]mm?, r,:radius of the motor [1.0,10.0jcm, t: thick-
ness of the stator [0.5,10.0]mm, I: current drawn by the motor
[0.1,6.0]A, L: stack length [0.057,5.18]cmThe mathematical for-
mulation of multi-objective optimization problem as follows:

Multi-Objective Optimization

Minimize Tougss(v)
Maximize T ficiency(V)
Maximize Torgue (v)
Subjectto gi(v)=r—t>0

g2(v) =5000—H >0, 1)
83 (Y) =2.0— T4 > 0,

84(2) =05< Torque <5.0,

85 (2) = 300 < Tpoyer < 600

86 (E) = Tef ficiency — 0.15>0

The multi-objective optimization (MOO) technique used
here is NSGA-II [Deb, 2001]], a well known evolutionary algo-
rithm. The NSGA-II parameters used in this study are as follows:
population size = 2000, maximum generations = 500, probabil-
ity of crossover for both real-valued and binary variables = 0.8,
probability of mutation 0.33 and 0.1 for real and binary vari-
ables and the distribution index for crossover and mutation are
16 and 30. The Pareto optimal front obtained using NSGA-II is
shown in Fig. [7(a). The Pareto-optimal surface is for maximizing

orque

T
efficiency

(c) (d)

Figure 7. Clusters in the non-dominated space for Universal mo-
tor. (a) The non-dominated solutions (pareto-front) in the 3-objective
space of mass, efficiency and torque. By considering the feasible designs
in the design space, we obtain two clusters based on unsupervised clsu-
tering in the design space. (c) The manifold space corresponding to the
map from the high-dimensional design space D = 8 to low-dimensional
design space d = 2 obtained with the help of LLE. Similary three clusters
are formed with varying unsupervised clustering input parameters (b) and
the corresponding low-dimensional manifold is shown in (d).

both the torque (To,que) and efficiency (T, ficiency) While mini-
mizing the mass (T,,4s5)-Having obtained non-dominated sets of
designs, and mapping these to the design space reveals that the
good designs (FFRs) are often restricted to a few patches on a
low-dimensional manifold, thus resulting in significant dimen-
sionality reductions for the design space.

5 Intrinsic Dimension

The main parameters in this reduction algorithm is estimat-
ing (i) number of neighborhoods (K) for each data point in the
higher dimension (D), and (ii) the lower dimensionality (d). The
estimated dimension d of d* is provided by the user as a param-
eter to the algorithm. If d is an under estimate of d*, there is
a loss of information and if d is an over estimate of d*, then
LLE will include arbitrary dimension. In PCA, the dimension-
ality is estimated by the number of eigen values of the simple
covariance matrix comparable in magnitude to the largest eigen
value. In LLE, to estimate the intrinsic dimensionality (d*), one
may count the number of eigen values of the covariance matrix
(M = (I-W)T(I—-W) (see [Saul and Roweis, 2003]]) compara-

Copyright (© 2009 by ASME

o o o
N o ©

Normalized Residual Error (rd)
o
[N

4 6
dimension (d)

Figure 8. Dimensionality of manifold for Universal Motors
based on . The FFR data is mapped onto manifolds of different di-
mensions, and then mapped back to the original design space and the
error is estimated. The error drops sharply from 1-D to 2-D manifold, and
then less sharply. The knee of the curve at “2” is indicative of the intrin-
sic dimensionality of the space. A separate maximum likelihood method
estimates the dimensionality of the Universal Motor space to be 2.6.

ble in magnitude to the lowest non-zero eigen values [Polito and
Perona, 2002]]. But these eigen values are not informative based
on the work [Saul and Roweis, 2003].

To obtain an estimate of the dimension of the manifold for
our data set, we use the technique based on the idea that a dimen-
sionality reduction algorithm should preserve information on a
global scale, as measured using bijection [Martin and Backer,
2005]. For a given input dataset X = {X;,... Xy} C RP, the di-
mensional reduction algorithm such as LLE provide a reduced
dimensional representation Y = {Y,...¥y} C R? of the original
data set X. It is assumed that X lies on a manifold M embedded
in RP with intrinsic dimensionality d*. The estimated dimen-
sion d of d* is a parameter to the algorithm. As per [Martin and
Backer, 2005, a good low dimensional representation of X can
be expected only if we should be able to go back and forth from
X and Y with no loss of information. Let us say, this algorithm
provides a map f : X — Y, mathematically an inverse function
f~1:Y — X exists such that f~!(f(X;)) = X; for all i and exists
only if the estimated dimension d > d* of the manifold. To de-
termine the existence of £ !, we have considered the same mea-
sure as proposed by [Martin and Backer, 2005]], squared residual
error (rg) = Y || f; ' (fa(Xi — X;)||, where f; : X — Y is map pro-
duced by LLE, which depends on the estimate d of the intrinsic
dimensionality and f '—y -Xisa proposed inverse to f;. To
estimate the actual dimension d* of the manifold M, we found ry
for different values of d. This residual error should be zero when
d > d* so that we may determine d* by finding the smallest value
of d such that r; = 0. Hence we can predict the intrinsic dimen-
sion by minimizing both r; and d. By observing the behavior of
rq for different values of d shown in Fig. 8| we can predict the
intrinsic dimension can be 2.

Also, we have used a method proposed by [Levina and

0.9

0.8

0.7

Error

0.6

0.5

0.4

0.3

10 50

20 30 40
No. of Neighbors (K)

Figure 9. Number of Neighborhoods:

Bickel, 2004] for estimating the intrinsic dimension of a dataset
by applying the principle of maximum likelihood to the distances
between the neighbors. With this method we have obtained the
intrinsic dimension value d* = 2.6.

6 Selecting 'K’ value

In LLE, the assumption is that local patches are linear, it
means each of them can be approximated by a linear hyper-
plane, and each data point can be represented by a weighted
linear combination of its K nearest neighbors. The selection of
number of nearest neighbors is an important parameter in LLE.
A large number of nearest neighbors causes smoothing or elim-
inating the of small-scale structures in the manifold. A small
number can falsely divide the continuous manifold into disjoint
sub-manifolds [Kouropteva et al., 2002]. We have experimented
the hierarchical method proposed in [Kouropteva et al., 2002]
with our design data to select the optimum K value. In this pro-
cess, without going through all steps of LLE, we can calculate
the reconstruction error & = Y | ||X; — X W;;X;;||* for each K
value varying from 1 to K,,,. When varying K, the € can be
considered as function of K and inturn K is function of the co-
efficients (weights W;;) and hence these coefficients alter as K
changes. As a result, we can choose the K value which has the
lowest €. Fig. E] is showing the €(K) for our motor data and from
this we found the optimal K value is 25.

7 Conclusion

We have presented an approach to the learning of design
symbols which are understood to be a tight binding between a
term or label and a semantic representation or image schema.
The latter is an extensive set of experiential associations. These
term-meaning pairs constitute an important part of the cognitive
repertoire of the human designer, but the semantic pole is com-
pletely lacking or severely bleached in current machine systems.
This makes it impossible to refer to instances of abstract sym-
bols (defined in terms of other symbols) which is what gives the

Copyright (© 2009 by ASME

human systems the plasticity in deploying these symbols.

In language learning by humans, only a few hundred sym-
bols are learned ab initio, in the pre-linguistic stage. These are
learned not just as the labels, but in terms of the rich set of as-
sociations that license its use. The remaining tens of thousands
of lexical units in the adult vocabulary are learned by exposure
to language, typically through reading. What this means is that
symbols are ultimately defined in terms of other symbols, but
even for these later symbols, instances are available as defined
by the linguistic context. Symbol combinations are understood
through a process of composition where the syntactic structure
involving different symbols are combined to construct a more
complex symbol [Langacker, 1986].

This process is clearly at work in the design process as well.
Once the infant designer has learned a few symbols, these may be
reinforced by communication, and be used to define other sym-
bols. For example, it may be told that a “peg” is the thing that
fits tightly in a “hole”. However, the symbol “fit-tightly-in-a-
hole” cannot emerge unless one has experienced the “wiggle”
associated with insertion tasks. Thus grounded or experienced
symbols provide the plasticity needed in real-life applications;
this is why human-defined symbols as used in design ontologies
today are subject to brittle failures. In design terms, “syntax”
may constitute the elements of a design and the modalities of
connecting them, its semantics then is the overall behaviour and
associations of the assembly. Thus, the semantics of fitting an
electric plug into a socket may inherit some aspects of the sym-
bol “fit-tightly-in-a-hole” but also some aspects of “energy-flow-
electrical-connection”. The appearance of the typical plug, its
prong structure, its weight, the sound of inserting it, all these
would also be part of the semantics. Clearly, defining all of these
experiential aspects would be a taxing task. Furthermore, with
the evolution of technology (or language), the semantics may
change, and maintaining such systems would be eventually a
doomed enterprise. A grounded learning system is much more
likely to be able to adapt to such changes.

This work is clearly exploratory, and much work is needed
to define the conditions in which manifolds may exist, and the
conditions under which a chunk may graduate into a symbol.
However, we feel that non-linear manifold learning as an im-
portant step in discovering latent relationships among the many
design parameters that permits defining this objective in terms of
chunks, is a computational tool with enormous potential. An im-
portant question this leads to is how to compute the composition
of more than one symbol; i.e. given the design elements each as
an individual symbol, we need to be able to say what the con-
junction of these elements (the syntax) will do, and whether the
resulting object - a design instance - will be adequate to meet a
design task or not. Again, depending on the “good designs” that
emerge in the process, a combination of symbols may come to
be designated as a symbol on its own right, leading to the birth
of abstract symbols.

10

At the same time, there is an important role for high-level
symbol ontologies. Just as designers can be taught certain rela-
tions, even computer functional models may benefit from explicit
awareness of pre-programmed relations, especially at levels of
abstraction that would be hard to grasp otherwise. However, it is
essential that the semantic poles for these instructions be defined
in terms of its own internal image schemas; without this, brittle-
ness may again prevail. Further, shared ontologies are crucial to
being able to communicate with humans.

In the final analysis, the argument presented here implies
that in the long run, to create viable computer vocabularies for
design, we must train the systems, at least in the earliest stages,
to learn these relationships, by experiencing many design and
real world situations. This may be done in an accelerated man-
ner, but the system must be exposed to something like the vast
array of experiences of a human - or possibly many more, since
the abstraction algorithms available today may not be as efficient.
As different systems are deployed in solving different problems,
their somewhat differing input sets would result in somewhat dif-
ferent abstractions for the same symbols. These resulting design
agents may therefore be somewhat less predictable than current
computers, but such is the price of flexibility.

REFERENCES

[Ahmed et al., 2003] Ahmed, S., Wallace, K. M., and Blessing,
L. T. (2003). Understanding the differences between how
novice and experienced designers approach design tasks. Re-
search in Engineering Design, 14(1):1-11.

[Belkin and Niyogi, 2002] Belkin, M. and Niyogi, P. (2002).
Laplacian Eigenmaps and Spectral Techniques for Embedding
and Clustering. Advances in Neural Information Processing
Systems, 1:585-592.

[Bishop, 2006] Bishop, C. (2006). Pattern recognition and ma-
chine learning. Springer.

[Bohm et al., 2005] Bohm, M., Stone, R., and Szykman, S.
(2005). Enhancing Virtual Product Representations for Ad-
vanced Design Repository Systems. Journal of Computing
and Information Science in Engineering, 5:360.

[Campbell et al., 2000] Campbell, M., Cagan, J., and Kotovsky,
K. (2000). Agent-based synthesis of electromechanical design
configurations. Journal of Mechanical Design, 122:61.

[Casasola et al., 2003] Casasola, M., Cohen, L. B., and
Chiarello, E. (2003). Six-month-old infants’ categorization
of containment spatial relations. Child Development, 74:679—
693.

[Chakrabarti et al., 2005] Chakrabarti, A., Sarkar, P,
Leelavathamma, B., and Nataraju, B. S. (2005). A functional
representation for aiding biomimetic and artificial inspiration
of new ideas. Al EDAM, 19(02):113-132.

[De Saussure, 1986] De Saussure, F. (1916/1986).
general linguistics. Open Court.

Course in

Copyright (© 2009 by ASME

[Deb, 2001] Deb, K. (2001). Multi-Objective imization using
Evolutionary Algorithms. Chichester, John Wiley and Sons,
Ltd., 1 edition.

[Gero and Fujii, 2000] Gero, J. and Fujii, H. (2000). A compu-
tational framework for concept formation for a situated design
agent. Knowledge-Based Systems, 13(6):361-368.

[Gladwell et al., 2005] Gladwell, M., Finder, H., and network,
C.-S. T. (2005). Blink: The power of thinking without think-
ing. Penguin Books.

[Gobet et al., 2001] Gobet, F., Lane, P., Croker, S., Cheng, P,
Jones, G., Oliver, L., and Pine, J. (2001). Chunking mech-
anisms in human learning. Trends in Cognitive Sciences,
5(6):236-243.

[Goldschmidt, 2003] Goldschmidt, G. (2003). The backtalk of
self-generated sketches. Design Issues, 19(1):72-88.

[Gorti and Sriram, 1996] Gorti, S. R. and Sriram, R. D. (1996).
From symbol to form: a framework for conceptual design.
Computer-aided design, 28(11):853-870.

[Gross, 1986] Gross, M. D. (1986). Design as Exploring Con-
straints. PhD thesis, Department of Architecture ,Mas-
sachusetts Institute of Technology.

[Hirtz et al., 2002] Hirtz, J., Stone, R., McAdams, D., Szykman,
S., and Wood, K. (2002). A functional basis for engineering
design: Reconciling and evolving previous efforts. Research
in Engineering Design, 13(2):65-82.

[Kouropteva et al., 2002] Kouropteva, O., Okun, O., and
Pietikainen, M. (2002). Selection of the optimal parameter
value for the locally linear embedding algorithm. In Proc. of
the 1 st Int. Conf. on Fuzzy Systems and Knowledge Discov-
ery, Singapore, pages 359-363.

[Kurtoglu et al., 2005] Kurtoglu, T., Campbell, M., Gonzales, J.,
Bryant, C., and Stone, R. (2005). Capturing empirically de-
rived design knowledge for creating conceptual design con-
figurations. In Proceedings of the ASME Design Engineering
Technical Conferences And Computers In Engineering Con-
ference. DETC2005-84405, in review, Long Beach, CA.

[Lakoff and Johnson, 1999] Lakoff, G. and Johnson, M. (1999).
Philosophy in the Flesh: The embodied mind and its challenge
to Western thought. Basic Books, New York.

[Langacker, 1986] Langacker, R. W. (1986). An introduction to
cognitive grammar. Cognitive Science, (10):1-40.

[Levina and Bickel, 2004] Levina, E. and Bickel, P. (2004).
Maximum likelihood estimation of intrinsic dimension. Ann
Arbor M1, 48109:1092.

[Mandler, 2004] Mandler, J. M. (2004). Foundations of Mind :
Origins of conceptual thought. Oxford University Press, New
York.

[Martin and Backer, 2005] Martin, S. and Backer, A. (2005).
Estimating manifold dimension by inversion error. In ACM
Symposium on Applied Computing, pages 22-26.

[McDonough et al., 2003] McDonough, L., Choi, S., and Man-
dler, J. (2003). Understanding spatial relations: Flexible in-

11

fants, lexical adults. Cognitive Psychology, 46(3):229-259.

[Moss et al., 2004] Moss, J., Cagan, J., and Kotovsky, K.
(2004). Learning from design experience in an agent-based
design system. Research in Engineering Design, 15(2):77-
92.

[Nanda et al., 2007] Nanda, J., Thevenot, H., Simpson, T,
Stone, R., Bohm, M., and Shooter, S. (2007). Product fam-
ily design knowledge representation, aggregation, reuse, and
analysis. Al EDAM, 21(02):173-192.

[Pahl and Beitz, 1996] Pahl, G. and Beitz, W. (1996). Engineer-
ing Design: A Systematic Approach. Springer.

[Park and Gero, 1999] Park, S. and Gero, J. (1999). Qualitative
representation and reasoning about shapes. In Visual and Spa-
tial Reasoning in Design, volume 99, pages 55-68.

[Polito and Perona, 2002] Polito, M. and Perona, P. (2002).
Grouping and Dimensionality Reduction by Locally Linear
Embedding. Advances in Neural Information Processing Sys-
tems, 2:1255-1262.

[Richard and Dixon, 1994] Richard, W. V. and Dixon, J. R.
(1994). Guiding conceptual design through behavioural rea-
soning. Research in Engineering, 6:169—188.

[Roweis and Saul, 2000] Roweis, S. and Saul, L. (2000). Non-
linear Dimensionality Reduction by Locally Linear Embed-
ding.

[Sarkar et al., 2008] Sarkar, S., Dong, A., and Gero, J. S. (2008).
A learning and inference mechanism for design optimization
problem (re)-formulation using singular value decomposition.
In Proceedings of DETC’08, ASME Design Engineering Tech-
nical Conferences and Computers and Information in Engi-
neering Conference.

[Saul and Roweis, 2003] Saul, L. K. and Roweis, S. T. (2003).
Think globally, fit locally: unsupervised learning of low di-
mensional manifolds. The Journal of Machine Learning Re-
search, 4:119-155.

[Simpson, 1998] Simpson, T. W. (1998). A Concept Exploration
Method for Product Family Design. PhD thesis, Georgia Tech
University, Dept Mechanical Engineering.

[Szykman et al., 2001] Szykman, S., Sriram, R., and Regli, W.
(2001). The role of knowledge in next-generation product de-
velopment systems. Journal of computing and information
Science in Engineering, 1:3.

[Tenenbaum et al., 2000] Tenenbaum, J., Silva, V., and Lang-
ford, J. (2000). A global geometric framework for nonlinear
dimensionality reduction.

Copyright (© 2009 by ASME

	Efforts towards standardizing the design vocabulary
	The semantics of design symbols
	Bottom-Up Semantics in design
	Emergence of design concepts

	Infant designer
	Symbol emergence
	Dimensionality Reduction
	Universal Motor example

	Chunking from Multi-Objective Optimization
	Example A : Universal Electric Motors

	Intrinsic Dimension
	Selecting 'K' value
	Conclusion

