
Symbol emergence in design

Abstract

Identifying a standard vocabulary and ontology is
viewed as an important task for engineering design.
While a number of high-level ontologies have been
proposed, these are difficult to ground in terms of
actual design instances, and manual definitions of
the symbols are often incomplete and difficult to
maintain. As an alternative, we propose an ”infant
designer” paradigm which abstracts patterns for the
”functionally feasible regions” (FFR) while evalu-
ating many individual configurations in the design
space. These learned FFR patterns (which may
arise due to minimal levels of functional accept-
ability, or from optimization) often embody depen-
dency relationships among the design parameters,
i.e. the good designs lie along lower-dimensional
manifolds in the design parameter space. We show
how such manifolds exist in several design situa-
tions; each combination of the original design pa-
rameters may be thought of as a ”chunk”; the space
of these chunks models only the ”good designs”.
Next, we show how the patterns defined based on
these chunks constitute image schemas, which may
be implicit (e.g. the pattern for an FFR), or ex-
plicit (where the relationship is observable). These
patterns or image schemas are incipient semantic
model leading to symbols. We present examples of
how such image schemas are arrived at in different
design classes, and also demonstrate how some of
them may be similar, or even invariant under design
change.

1 Efforts towards standardizing the design
vocabulary

Evolving a standardized vocabulary for design has emerged
as an important focus in engineering design with a need for
communicating between differing systems and design groups.
Possible applications include developing design repositories
[Bohm et al., 2005; Nanda et al., 2007], computer assisted
conceptual design [Gorti and Sriram, 1996; Campbell et
al., 2000; Kurtoglu et al., 2005], [Chakrabarti et al., 2005;
Gero and Fujii, 2000], etc. It is clear that vocabularies are

structured, that is there are considerable relations between
terms. Often, this is viewed as an ontology or as a struc-
tured relationship that captures a part of the semantics of
these terms. One popular view of the engineering system
considers the flow of energy, information, etc, and proceeds
downward into detailed design. With its roots in value engi-
neering ideas from the 1940s, these notions were seeded by
the analysis in Pahl and Beitz [Pahl and Beitz, 1996] and a
particularly influential study by Welch and Dixon [Richard
and Dixon, 1994], leading to modern ontological models like
the widely used functional basis model [Hirtz et al., 2002]
or implementations on ontology tools [Nanda et al., 2007;
Szykman et al., 2001].

1.1 The semantics of design symbols
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Figure 1: Emergence of symbols based on experience: Often
the same abstract pattern (or chunk) appears in many experi-
ences (e.g. the notion of “fit” for peg in hole, bolt in latch,
plug in sink, etc.). If a chunk is valuable in compactly rep-
resenting many situations, it has a higher likelihood of being
communicated, thus acquiring a phonological pole and be-
coming a symbol. A symbol can then form other associations
besides the initial chunk, all of which together constitute its
semantic pole or image schema.

All these models define a number of symbols at different
levels in the hierarchy. Unfortunately the term “symbol”, as
it is used in the logic and computational community is con-
siderably different from its usage in cognitive linguistics and
in everyday life. In the latter usage, symbols are imbued with
meaning grounded on experience, whereas in the formal us-
age, it is merely a token constructed from some finite alpha-



bet, and is related only to other terms. If we present an anal-
ogy, a blind man knows “red” is a different color from “blue”
and “green” but his understanding of red is is dramatically
different from that of a sighted person, because the seman-
tic pole is not connected to direct experience.On the other
hand, “symbol” has come to be understood in cognitive sci-
ence (and also traditionally in linguistics, e.g. de Saussure
( [De Saussure, 19161986]), as the tight binding of the of
the psychological impression of the sound (the “phonological
pole”) with the mental image of the meaning (the semantic
pole) [Langacker, 1986]. The mental image or image schema
includes all sorts of associations and is somewhat different
for each user, though social convention ensures a degree of
overlap between mental images within the language commu-
nity.

However, the notion of symbol is more far-reaching than
communication. It turns out that to some extent, the symbols
help divide up the world into chunks, and eventually, it may
reflect changes in how we think.
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Figure 2: Abstraction starts with ground instances: Each
symbol in this hierarchy has a term or label (“dent”, “slot”
or “slit”) and a corresponding abstract pattern or “image
schema”. The image schema is used in identifying an in-
stance as belonging to a symbol category, but also in compos-
ing symbols, and in interpreting higher abstractions. Primi-
tive design ontologies are born is-a through usage; when in-
stances already known as dents or slots are also labelled as
“depressions” by a trusted user, the system learns the sub-
class relationship. This makes grounded instances available
even for the more abstract symbols. Similarly, other relations
e.g. “dents are generally undesirable” would also be learned
through usage and become part of the image schema. The
number of such associations for each symbol is often very
large, and limiting these to a few user-determined definitions
is a major contributor to brittleness in knowledge systems.

Symbols in CAD systems are not completely devoid of
the semantic pole, but those symbols instantiated in the im-
plemented CAD systems are mostly suitable to a particular
domain but are not transferable to other existing or new do-
mains. For example, a “slot” on a coin-machine vs a “slot” on
a machining fixture both have similar physical and geomet-
ric symbol but these two instances are in different domains.

These type of situations are almost impossible to program,
since the range of usage very large, and may even be un-
bounded.

1.2 Bottom-Up Semantics in design
An alternative that has been proposed for modeling design
concepts is to attempt to move more towards the human pro-
cess, to learn symbols based on design experience[Gero and
Fujii, 2000]. The human design process is a constant, moti-
vated exploration of the design space, e.g. through sketching.
All the while, the designer is focusing on the designs that are
“good” in some functional sense, and eventually, some kinds
of patterns emerge as the common characteristics of these de-
signs. This is one sense in which sketches “talk back” to the
designer [Goldschmidt, 2003]. These patterns result in con-
straints whereby many of the initial design variables can be
combined, a process cognitively known as chunking [Gobet
et al., 2001].

In case of designing a padlock, we may learn that in a pad-
lock, to balance the strength in its components, the shackle di-
ameter increases roughly in proportion with body size. Thus
these two parameters can then be brought down to a single
chunk. In this way, expert designers based on their experience
will come up with “good designs” [Gross, 1986] by choosing
wide range of design variables, than would have beeen possi-
ble initially.

An early attempt at discovering patterns in the design space
of shapes may be seen in relation to 2D shapes in the work of
[Park and Gero, 1999]. [Moss et al., 2004] have developed a
system in which the M-agents consider the good designs and
can be used to extract chunks which are added to memory and
become part of the variable space. Similary a recent approach
by [Sarkar et al., 2008], which considers Singular Value De-
composition (SVD) on a co-occurance matrix of matrix of
variables and constraints to identify the relations between dif-
ferent variable groups.

1.3 Emergence of design concepts
None of these proposals however learn the concepts under-
lying the symbol (the semantic pole) in a grounded manner,
and therefore lack the flexibility of the human designer. By
grounded, we refer to the progressive manner in which a hu-
man designer learns her concepts - the more abstract ones
are based on earlier, concrete concepts, but are still presented
through instances and in the end, many concepts are grounded
in terms of a number of experiential instances.

In this work, we propose to take the first step towards build-
ing this grounded semantics, which we call the birth of sym-
bols. What is a symbol? We take a symbol to mean the tight
binding between a label and a large set of consciously acces-
sible experiential patterns. The label is usually a communica-
tive term, and constitutes its phonological pole. Occasionally,
however, for example while “talking” to a sketch, a designer
may get a conscious awareness of a constraint without ver-
balizing it - and even these are symbols. Or it may be verbal-
ized, and acquire a name. Either process (called reification
results in a new symbol. At the same time, amorphous im-
plicit schemas, which are formed well before we are aware



of them (see the book Blink [Gladwell et al., 2005] for ex-
amples of this) are incipient symbols, but not quite there yet.
Still, they are useful, and we do use them, but they need to
prove their mettle before they become true symbols. This in-
terpretation is in line with a long tradition in psychology and
linguistics [Mandler, 2004].

Since we are concerned with discovering patterns that ap-
ply to the set of good designs, we must have a way of assess-
ing whether a design is good or not. This implies that some
set of functional criteria must be available; even if it is not
quantitative, it must be capable of ordering a wide variety of
design instances, and given a design instances (a set of values
for the design variables) it must be possible to determine the
degree of functional feasibility. Such a model of function is
usually not available in the very earliest stages of design; in-
deed even for human designers, insights usually arise while
fiddling with instances, when suddenly a pattern may light
up. So we are considering this type of emergence only after
an embodiment is available, when the nature of its function
can be related to the set of design variables. As in [Moss et
al., 2004] we consider “good designs” as those arising from
multi-criteria optimization or based on user-defined minimal
functional criteria.

The next sections outlines the development of the infant
designer into a (very) early designer; the idea is that compu-
tational models capable of human-like ability would be pos-
sible based on the equivalent of years of exposure to such
situations. In the end, we may expect to have a grounded
symbol system that can reason about the flow of energy and
take it down to a detailed design, but that end, even if it is
achievable, is clearly far away. At present, let us start with
the infant designer.

2 Infant designer
An infant designer is really the baby who is first discovering
regularity of object behaviour in the world and is one who is
just beginning to form her knowledge of the world. She can
make various choices, and evaluate them based on some no-
tion of function. Considering the peg-in-hole task just alluded
to, we see how she might learn the concept that a peg must be
smaller than a hole.

The functional model considered is simple - the design is
functionally feasible if the peg can go in (actually our system
computes the configuration space - the penetration region dis-
appears when w¿t - but this is not relevant here). We consider
a horizontal version of the peg-in-hole - a latch is entering
a slot on a bolt, say. Figure 3 shows how after evaluating a
number of instances in the design space of latch-widths w and
slot-widths t; in (w, t) space, a clear 45 degree line emerges,
separating the “good designs” from the bad.

Does this constitute symbolic knowledge for the infant de-
signer? Most likely not. However, it is something that might
become a symbol as she acquires other concepts that she can
refer to. An important aspect of symbols is that they are de-
fined in relation to other symbols, e.g. if we consider vo-
cabulary A which has both the terms “slot” and “slit”, versus
system B, which has only “slot”, then we might expect the se-
mantic pole of “slot” to more narrowly defined in A than in B.
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Figure 3: Learning through experience that latch-must-be-
smaller-than-slot (w > t). (a) A latch of thickness t is fit-
ted to a slot of width w. The learned patterns are shown in
(w, t)-space in (b)-(d). The quality of the learned pattern
varies greatly with degree of experience: results shown for
a multi-layer perceptron after experiencing 10,50, and 200
design instances.

Similarly for the infant, it needs a certain density of putative
symbols before making the symbolic jump.

What is interesting in the results of figure 3 is how, after
experiencing just a few instances, the pattern is inchoate, so
the baby keeps trying to insert the fat square into the smaller
circle, filling up the negative (black) area of the figure. Even-
tually the defining boundary becomes sharper, and at some
point it can be said to knows the principle, at least implicitly.

At the next step for our infant designer, we consider the
concept that a designer knows as “fit”. By now our infant
learner will attempt to insert pegs only if they are smaller than
the slot. The function is defined in terms of the degree of fit
- how much does it wiggle? Defining the wiggle in terms of
the area of the free-space in the configuration space, we see
that if the wiggle desired is very small, we get the situation
on the left, and if it is very large, we get the situation on the
right. Eventually, the learner learns the concept of “fit” as
a chunk (composed as w − t) - thus, given a level of fit, it
imposes a constraint where w and t are related in a manner
where they constitute a one-dimensional chunk instead of two
independent variable.

Of course, from a machine learning perspective, both these
examples are rather elementary. Our objective in presenting
it is merely to emphasize the role of even the earliest knowl-
edge in many advanced design situations. These two con-
cepts are also among our earliest knowledge achievements;
typically, infants learn containment (peg in hole) by about
3 months, and tight vs loose by 5 months [Casasola et al.,
2003]. Many cognitive scientists believe that our concepts of
abstraction, including the is-a crucial to constructing hierar-
chies, is a metaphorical extension of containment [Lakoff and
Johnson, 1999].
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Figure 4: Birth of the image-schema for “fit”: An insertion
task with different kinds of fit are shown in the top row and
the corresponding design spaces (w, t) with feasible and in-
feasible regions are shown below. The function is given as
the amount of play available (amount of free-motion or wig-
gle). If the desirable wiggle is specified, the two-dimensional
design space is effectively reduced to one since a relation
emerges between the feasible w and t. This mapping or image
schema is a early prototype of the concept of “fit”.

3 Symbol emergence
As the designer matures from infancy, we can consider the
more general process by which symbols form. These corre-
spond to the stages shown in figure 5. At first, the designer
explores with instances in the design space, distinguishing the
good designs from the bad. Eventually a region in the design
space emerges as that containing mostly the feasible designs -
this is the Functionally Feasible region (FFR), or the space of
“good designs”. At least implicitly, this region is being con-
tinuously abstracted in terms of function. If the region is a
very simple, one may even get an explicit characterization for
it. However, in many high dimensional design spaces (even in
the 8-dimensional example next) such relations are far from
obvious.

The other interesting aspect of the FFRs is that they of-
ten correspond to narrow bands of functional feasibility. This
may be because they are the result of (possibly unconscious)
multi-objective optimization - thus, if there are k design ob-
jectives, then they constitute a k − 1 surface in the objective
space. When the function measures that map from the design
variable space to the objective space are at least continuous,
their Jacobians would be well-posed, and the near neighbours
in the objective space may correspond to near neighbours in
the design space. If this is actually correct, we may expect
the designs to lie along a k − 1 surface (or “manifold”) in
the objecitve space (shown as a folded patch in the figure).
More generally, the mapping from the design space to the
functional objective space is not so well-posed, but the di-
mensionality reduction, while not quite as pronounced, may
still be very significant.

Each dimension in this reduced dimensional map reflects
an inter-relation between many independent design parame-
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Figure 5: The symbol emergence process: our main interest
is to discover and learn structural or behavioral chunks that
result in good designs, corresponding to functionally feasi-
ble regions (FFRs) in the designs space. FFRs typically re-
flect multiple functional criteria, and may be obtained from
some approximate optimization, or from user specified min-
imal functional criteria. A set of FFR instances can be used
to learn a pattern of functional feasibility, the quality of this
pattern improves with experience as earlier. Once the FFR
is sufficiently rich, one may also discover that they lie along
some low-dimensional manifold (Rd) embedded in the high-
dimensional design space RD (d � D). The lower dimen-
sional space is then a chunked representation for the initial
design space. If this relation becomes conscious, it may then
become a design symbol.

ters. Subsequently, many other design situations also reveal
such reduced dimensional hyper surfaces, with different di-
mensionalities. Sometimes, some of these dimensional map-
pings or chunks may recur in many design situations - this
makes the chunk useful, which is an important criteria for be-
coming a symbol. In the interim, the designer may use these
chunks with a dim awareness of it for a long period, even sev-
eral years. Meanwhile, as other instances are being explored,
and the confidence in the manifold mapping increases, the de-
signer may eventually articulate it (at least to herself), which
would be the birth of a true symbolic representation for this
concept. At this point, a label may get attached to it, and
many other associations would eventually accrue to this term
/ image-schema pair; it would then constitute a truly reified
symbol in the sense that most cognitive scientists would un-
derstand it.

3.1 Dimensionality Reduction
To determine the inter-relations between many independent
design parameters , now we present the algorithm to ob-
tain “good designs” constrained to a much lower dimensional
manifold in the design space.

One of the main strategies to handle high dimensional de-
sign data is diminsionality reduction, involves finding low-



dimensional structures in high-dimensional space. Though
there is a large body of work is concentrated in determining
these low-dimensional representations [Bishop, 2006] like
linear methods PCA, ICA, etc, but these linear methods fails
when the data lies on nonlinear manifold.in such situations
the linear algorithms give the smallest convex subspace en-
capsulating the manifold, which is often of a much higher
dimension.Approaches for obtaining the non-linear represen-
tation of the data include Global methods (Isomaps [Tenen-
baum et al., 2000] ) and Local methods (Locally Linear Em-
bedding [Saul and Roweis, 2003] and Laplacian Eigenmaps
[Belkin and Niyogi, 2002]).

1. Compute the neighbors Xj of each data
point,Xi.

2. Compute the weights Wij that best
reconstruct each data point Xi from its
neighbors, minimizing the reconstruction
error (ε(W ) =

∑
i
|Xi −

∑
j
WijXj |2) by

constrained linear fits.

3. Compute the vectors Γi best reconstructed
by the weights Wij, minimizing the
quadratic form (Φ(Γ) =

∑
i
|Γi −

∑
j
WijΓj |2) by

its bottom nonzero eigenvectors.

In this study, we use LLE, which is an eigen vector method
for the problem of nonlinear dimensionality reduction [Saul
and Roweis, 2003; Roweis and Saul, 2000] to identify the
underlying non-linear manifold in high-dimensional design
space. The LLE algorithm is described in algorithm 3.1.

3.2 Universal Motor example
Next we consider a well-known problem in the design lit-
erature, that of designing an Universal Motor. Universal
motors have been well studied in the product family design
literature [Simpson, 1998], where the physical description
and schematic of the universal motor have been presented.
The design space for embodiment design consists of 10 de-
sign variables ~v = {Nc, Ns, Awa, Awf , ro, t, lgap, I, Vt, L}
where Nc: number of wire turns on the armature, Ns: number
of wire turns on each pole on the field , Awa: cross-sectional
area of the wire on the armature, Awf : cross-sectional area
of the wire on the field, ro:radius of the motor, t: thickness of
the stator , I: current drawn by the motor, L: stack length, and
the performance behaviors are taken as strength, mass, energy
and efficiency and the corresponding performance metrics in-
terms of these design variables can be πtorque(~v) = NcφI

Π ,
πmass(~v) = masswindings+massarmature+masswindings,
πpower(~v) = VtI − I2(Ra +Rs)− 2I , and πefficiency(~v) =
πpower

VtI
. The derivation and the related equations are pre-

sented well in [Simpson, 1998]. And the main constraints
we considered here for the feasible motors are (i) the mag-
netizing intensity H < 5000 and (ii) the outer radius of the
stator ro must be greater than the thickness of the stator t.

A minimal parameter set for the universal motors may be
considered in terms of the two design parameters L and I ,
while keeping other parameters constant [Simpson, 1998].
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Figure 6: Chunking on the L, I subspace for Universal Mo-
tors: (a) The implicit constraint on the L, I subspace of the
Design Space is learned for 2000 design instances under the
functional specification 280 W< πpower < 295 W. (b) The
feasible designs in the L, I subspace, in which each design
instance can be identified based on two parameters L and
I . This subspace is mapped into a low-dimensional (one-
dimension) shown in (c). A,B, and C are three different de-
sign instances mapped from L, I space to one-dimensional
space.

To obtain the feasible universal motors for the desired func-
tional range of power 280 W< πpower < 295. Figure 6(a)
shows the result of learning the FFR (the valid designs result-
ing from this constraint). These lie along a small band, which
can be thought of as a curved 1-D manifold (with a slight
thickness). 6(b).

Next, we demonstrate the manifold nature of the FFR us-
ing the eigenvector method called locally linear embedding or
LLE, explained in the next section. The mapping between the
nonlinear feasible region (Fig. 6 (b)) and the one-dimensional
chunk for it below (Fig. 6 (c)) shows the continuity of map-
ping between these. If we take three data points A,B, and C
in L, I space. Let us say X = [A B C], each data point is a
real-valued vector, with of dimensionality 2. With the help
of Local Linear Embedding (LLE) algorithm [Roweis and
Saul, 2000], we construct a neighborhood preserving map-
ping from L, I space to Γ. The three points A= (32.0, 4.09),
B= (22.5, 3.5455) and C= (10.5, 12.000) and their corre-
sponding mappings in the lower-dimensional manifold are
γA = −0.2102, γB = −0.1430 and γC = 0.0007.

After this γ chunk is discovered in this Universal motor
situation, it is possible that it may also emerge in other sit-
uations. If so, a designer may communicate the idea of this
chunk to another; let us say he calls it “gavagai”. Then as
the term “gavagai” spreads in the design community, it would
occur in many other situations, and each association would
form part of the semantics of the term gavagai.

Indeed, different generations of designers would discover
their own image schemas for gavagai, and the term may be
applied to wider contexts (“generalization”) or more specific
ones (“specialization”); thus, it would slowly change its se-



mantics over time. This is another way in which static pro-
grammed machine semantics, even if they can capture all the
usages at a given point of time, would not be able to keep
up with human usage unless it adopts an experiential learning
modality as proposed here.

4 Chunking from Multi-Objective
Optimization

Until now, we have considered the FFRs as arising from user
defined functional desiderata. However, how does the user ar-
rive at these functional bounds? Here, we need not know the
bounds on the performance, just the set of performance mea-
sures, computable given an instance of the design, are to be
specified. In practice, a more useful approach towards finding
FFRs is to consider them as the estimated pareto fronts aris-
ing from Multi-objective optimization. Most computational
multi-objective optimization (MOO) algorithms provide es-
timates for the non-dominated front [Deb, 2001]. For our
purposes, the non-dominated front constitutes a description
of “good designs”. The front is obtained in the space of ob-
jective functions, and our first task would be to map it to the
design space. We would then consider these “good designs”
in the design space and try to find a manifold representation
for it.

4.1 Example A : Universal Electric Motors
Let us now formulate the design of Universal mo-
tors as a multi-objective optimization problem to identify
FFRs. Here we consider eight design parameters ~v =
{Nc, Ns, Awa, Awf , ro, t, I, L} and their ranges are, Nc:
number of wire turns on the armature [100, 1500], Ns:
number of wire turns on each pole on the field [1, 500],
Awa: cross-sectional area of the wire on the armature
[0.01, 1.0mm2], Awf : cross-sectional area of the wire on the
field [0.01, 1.0]mm2, ro:radius of the motor [1.0, 10.0]cm, t:
thickness of the stator [0.5, 10.0]mm, I: current drawn by the
motor [0.1, 6.0]A, L: stack length [0.057, 5.18]cmThe math-
ematical formulation of multi-objective optimization problem
as follows:

Multi-Objective Optimization

Minimize πmass(v)
Maximize πefficiency(v)
Maximize πtorque(v)
Subject to g1(v) ≡ r − t > 0

g2(v) ≡ 5000−H > 0,
g3(v) ≡ 2.0− πMass ≥ 0,
g4(v) ≡ 0.5 ≤ πtorque ≤ 5.0,
g5(v) ≡ 300 ≤ πPower ≤ 600
g6(v) ≡ πefficiency − 0.15 ≥ 0

(1)

The multi-objective optimization (MOO) technique used
here is NSGA-II [Deb, 2001], a well known evolutionary
algorithm. The NSGA-II parameters used in this study are
as follows: population size = 2000, maximum generations
= 500, probability of crossover for both real-valued and bi-
nary variables = 0.8, probability of mutation 0.33 and 0.1
for real and binary variables and the distribution index for
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Figure 7: Clusters in the non-dominated space for Univer-
sal motor. (a) The non-dominated solutions (pareto-front)
in the 3-objective space of mass, efficiency and torque. By
considering the feasible designs in the design space, we ob-
tain two clusters based on unsupervised clsutering in the de-
sign space. (c) The manifold space corresponding to the
map from the high-dimensional design space D = 8 to low-
dimensional design space d = 2 obtained with the help of
LLE. Similary three clusters are formed with varying unsu-
pervised clustering input parameters (b) and the correspond-
ing low-dimensional manifold is shown in (d).

crossover and mutation are 16 and 30. The Pareto opti-
mal front obtained using NSGA-II is shown in Fig. 7(a).
The Pareto-optimal surface is for maximizing both the torque
(πtorque) and efficiency (πefficiency) while minimizing the
mass (πmass).Having obtained non-dominated sets of de-
signs, and mapping these to the design space reveals that the
good designs (FFRs) are often restricted to a few patches on
a low-dimensional manifold, thus resulting in significant di-
mensionality reductions for the design space.

5 Intrinsic Dimension
The main parameters in this reduction algorithm is estimat-
ing (i) number of neighborhoods (K) for each data point in
the higher dimension (D), and (ii) the lower dimensionality
(d). The estimated dimension d of d∗ is provided by the user
as a parameter to the algorithm. If d is an under estimate of
d∗, there is a loss of information and if d is an over estimate
of d∗, then LLE will include arbitrary dimension. In PCA, the
dimensionality is estimated by the number of eigen values of
the simple covariance matrix comparable in magnitude to the
largest eigen value. In LLE, to estimate the intrinsic dimen-
sionality (d∗), one may count the number of eigen values of
the covariance matrix (M = (I − W )T (I − W ) (see [Saul
and Roweis, 2003]) comparable in magnitude to the lowest
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Figure 8: Dimensionality of manifold for Universal Motors
based on . The FFR data is mapped onto manifolds of differ-
ent dimensions, and then mapped back to the original design
space and the error is estimated. The error drops sharply from
1-D to 2-D manifold, and then less sharply. The knee of the
curve at “2” is indicative of the intrinsic dimensionality of the
space. A separate maximum likelihood method estimates the
dimensionality of the Universal Motor space to be 2.6.

non-zero eigen values [Polito and Perona, 2002]. But these
eigen values are not informative based on the work [Saul and
Roweis, 2003].

To obtain an estimate of the dimension of the manifold
for our data set, we use the technique based on the idea
that a dimensionality reduction algorithm should preserve
information on a global scale, as measured using bijection
[Martin and Backer, 2005]. For a given input dataset X =
{X1, . . . XN} ⊂ RD, the dimensional reduction algorithm
such as LLE provide a reduced dimensional representation
Y = {Y1, . . . YN} ⊂ Rd of the original data set X . It
is assumed that X lies on a manifold M embedded in RD

with intrinsic dimensionality d∗. The estimated dimension d
of d∗ is a parameter to the algorithm. As per [Martin and
Backer, 2005], a good low dimensional representation of X
can be expected only if we should be able to go back and
forth from X and Y with no loss of information. Let us
say, this algorithm provides a map f : X → Y , mathemat-
ically an inverse function f−1 : Y → X exists such that
f−1(f(Xi)) = Xi for all i and exists only if the estimated
dimension d ≥ d∗ of the manifold. To determine the exis-
tence of f−1, we have considered the same measure as pro-
posed by [Martin and Backer, 2005], squared residual error
(rd) =

∑
i ||f

−1
d (fd(Xi − Xi)||, where fd : X → Y is

map produced by LLE, which depends on the estimate d of
the intrinsic dimensionality and f−1

d = Y → X is a proposed
inverse to fd. To estimate the actual dimension d∗ of the man-
ifold M , we found rd for different values of d. This residual
error should be zero when d ≥ d∗ so that we may determine
d∗ by finding the smallest value of d such that rd = 0. Hence
we can predict the intrinsic dimension by minimizing both rd

and d. By observing the behavior of rd for different values of
d shown in Fig. 8 we can predict the intrinsic dimension can
be 2.

Also, we have used a method proposed by [Levina and
Bickel, 2004] for estimating the intrinsic dimension of a
dataset by applying the principle of maximum likelihood to

the distances between the neighbors. With this method we
have obtained the intrinsic dimension value d∗ = 2.6.

6 Conclusion
In this work we have presented an approach to the learning
of design symbols which are understood to be a tight bind-
ing between a term or label and a semantic representation or
image schema formed by an extensive set of experiential as-
sociations. These term-meaning pairs constitute an important
part of the cognitive repertoire of the human designer, but the
semantic pole is completely lacking or severely bleached in
current machine systems. This makes it impossible to refer to
instances of abstract symbols (defined in terms of other sym-
bols) which is what gives the human systems the plasticity in
deploying these symbols.

In language learning by humans, only a few hundred sym-
bols are learned ab initio, in the pre-linguistic stage. The re-
maining tens of thousands of lexical units in the adult vocab-
ulary are learned by exposure to language, typically through
reading. What this means is that symbols are ultimately de-
fined in terms of other symbols, but even for these later sym-
bols, instances are available as defined by the linguistic con-
text. Symbol combinations are understood through a process
of composition where the syntactic structure involving differ-
ent symbols are combined to construct a more complex sym-
bol [Langacker, 1986].

This process is clearly at work in the design process as
well. Once the infant designer has learned a few symbols,
these may be reinforced by communication, and be used to
define other symbols. For example, it may be told that a “peg”
is the thing that fits tightly in a “hole”. However, the symbol
“fit-tightly-in-a-hole” must be an experienced symbol for this
schema to have the plasticity needed in future applications,
without it it would be subject to brittle failures. In design
terms, “syntax” may constitute the elements of a design and
the modalities of connecting them, its semantics then is the
overall behaviour and associations of the assembly. Thus, the
semantics of fitting an electric plug into a socket may inherit
some aspects of the symbol “fit-tightly-in-a-hole” but also
some aspects of “energy-flow-electrical-connection”. The ap-
pearance of the typical plug, its prong structure, and many
other aspects would also be part of the semantics. Clearly,
defining all of these experiential aspects would be a taxing
task. Furthermore, with the evolution of technology or human
communication, the semantics may change, and maintaining
such systems would be eventually a doomed enterprise.

This work is clearly exploratory, and much work is needed
to define the problem more clearly. Among the contributions
of this work, we propose non-linear manifold learning as an
important step in discovering latent relationships among the
many design parameters that permits defining this objective
in terms of chunks, which constitute the first step towards
forming symbols. Among the work that would need to be
done next is to the conjoints of more than one symbol; i.e.
given the design elements each as an individual symbol, we
need to be able to say what the conjunction of these elements
(the syntax) will do, and whether the resulting object - a de-
sign instance - will be adequate to meet the design task or



not. Again, depending on the “good designs” that emerge in
the process, a combination of symbols may come to be des-
ignated as a symbol on its own right, leading to the birth of
abstract symbols.

At the same time, there is an important role for high-level
symbol ontologies. Just as designers can be taught certain re-
lations, even computer functional models may benefit from
explicit awareness of pre-programmed relations, especially
at levels of abstraction that would be hard to grasp other-
wise. However, it is essential that the semantic poles for these
instructions be defined in terms of its own internal image
schemas; without this, brittleness may again prevail. Also,
there remains a role for these in human communication pro-
cess. However, for the purposes of low-level symbol devel-
opment, it would be futile to try to define these semantics in
terms of other symbols and rules, or even in terms of a few
definitions.

In the final analysis, the argument presented here implies
that in the long run, to create viable computer vocabularies for
design, we must train the systems to learn these relationships,
by experiencing many design and real world situations. This
may be done in an accelerated manner, but the system must
be exposed to something like the vast array of experiences of
a human - or possibly many more, since the abstraction pro-
cesses as we understand it so far may not be as efficient. As
different systems are deployed in solving different problems,
their somewhat differing input sets would result in somewhat
different abstractions for the same symbols. These result-
ing design agents may therefore be somewhat less predictable
than current computers, but such is the price of flexibility.
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