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ABSTRACT

We propose occlusion primitives to define a set of time-
varying predicates on trackers for heterogeneous objects
moving in unknown environments. Input pixel information
is processed at inter-dependent levels to generate abstract
categories for agents and actions. The scene background is
learned online at the lowest layer, using feedback from the
tracking level to robustly identify multiple agents. Agent shape
and color features, status history and trajectories are clustered
to discover categories for agents as well as their actions.
Unlike existing surveillance systems, the proposed approach
does not assume any prior model and aims at learning the
scene/agent/event models from the acquired visual informa-
tion. Results are demonstrated for traffic videos involving
humans, vehicles and animals.

I. INTRODUCTION

Systems that attempt to learn conceptual categories from im-
age schema can be constituted into two classes. First, Vision-
only systems that use visual priors to construct models for
object classes (e.g. [1], [2]) and second, Multi-modal systems
that combine audio/text and video streams to match image
categories with commentries/annotations [3], [4]. Vision-only
systems construct models that require supervised input in
the form of object priors. In the second class, co-occurrent
language streams are associated with image features, often
mediated by attentive focus [3]. However, there is considerable
cognitive evidence for pre-linguistic conceptualization [5], [6],
where perceptual inputs are categorized based on objects and
object movements, and categories such as animals and vehicles
are learned by five to six months of age ([7], p. 602).

In this work, we investigate this approach and attempt to
learn agent and activity universals with neither supervisory
visual input nor the parallel linguistic tokenization. The system
is presumed to have the capacity for learning a background,
updating objects that start moving or come to a stop against
this background, tracking image blobs as they move across the
scene, and taking note of merging and de-merging behavior
with respect to other objects and scene fragments. The cate-
gorization takes place in a multi-layered learning system, with
continuous sensory inputs mediating with higher level charac-
terization in both forward and feedback modes. Thus, the raw
image sequences (acquired with a static camera) are processed
at inter-dependent layers where the information feedback and
feed forward between different levels play a vital role in
enhancing the adaptive learning efficiency of scene, agent and

activity models. The temporal pixel intensity histogram and
inter-frame motion information is computed at the lowest layer
for simultaneous learning of pixel-wise background model and
foreground blob extraction. The agents are characterized by
their color distribution, occupied pixel set and trajectories and
are initialized with the features computed from the foreground
blobs at their very first instant of detection. These are tracked
further in the image sequences with a motion based prediction
initialized mean-shift tracker [8] in the next higher layer. The
agent position information is then fed back to the lower layer
for selective adaptation of the background model.

Fig. 1. The functional block diagram of the proposed system. Background
modeling is performed in the lowest layer (left column) of processing with
feedbacks from multi-agent tracking at the mid level. The agent discovery and
activity mining are performed in the higher layer (right column) by processing
agent features obtained in the mid layer.

At the next layer, we derive a set of occlusion primitives (O-
primitives, henceforth) from the association measures of the
agent pixels and the detected foreground blobs to identify them
in one of the states of isolation (not connected to any other
agents), partial occlusion (by background objects), crowding
(with other agents resulting to partial or full occlusions),
disappearance (due to track loss or complete occlusion by
background objects), entry (the initial emergence of the agent)
and exit (disappearing near the borders). Additionally, we
identify the detection of new agent(s) in the neighborhood
that aids in discovering certain classes of (homo)heterogeneous
multi-agent interactions. These occlusion primitives are fed
back to the tracking layer for selective updates of the agent
features (e.g. color distribution and pixel set are updated
only in the state of isolation). The agents are categorized
in an unsupervised manner by learning mixture of Gaussians
over the space of shape features. Results are demonstrated in
successful discovery of man, tempo (a short distance public
transport found in some Indian cities), cars, heavy vehicles
(bus, truck, tractors), man on bike/cycle, rickshaw and animal



(cow). The agent activities (actions and interactions with
other agents) are generated by mining the occlusion primitive
transition sequences. We demonstrate the results of successful
discovery of people embarking/disembarking vehicles, agents
crossing/overtaking each other from raw traffic surveillance
videos.

This paper presents our work in the following manner.
Section II explains the lower level processing for foreground
blob extraction and simultaneous adaptive background learn-
ing with inter-frame motion and higher layer agent position
information. Multi-agent tracking with O-primitive identifi-
cation and selective feature updates are discussed in Sec-
tion ??. Section IV describes the process of unsupervised
agent categorization by using incrementally learned mixture
of Gaussians. The process of O-primitive transition sequence
mining for action/interaction discovery is detailed in Section
V. The results of multi-agent tracking, agent and activity
discovery are presented in VI. Finally, we conclude in Section
VII and outline the future extensions to the present work.

II. BACKGROUND MODELING

Agents are identified as foreground regions based on one
of two kinds of evidence: first, as regions of change with
respect to a learned background model; and second, as regions
exhibiting motion. Learning the background model in presence
of agents is a challenging problem in itself. Several approaches
have been proposed to incrementally learn the background
scene model in the presence of agents. The most commonly
adopted algorithms include the computation of median [1]
or fitting (temporally evolving) Gaussian mixture models [9],
[10] on the temporal pixel color histogram of the image
sequence. These approaches continuously learn the multi-
modal mixture models with the assumption that the moving
objects appear at a certain pixel only temporarily and the true
background remains accessible to the system more frequently
leading to higher weight of the corresponding mode. However,
such an approach is prone to transient errors persisting over a
number of frames (depending on the learning rate), resulting
in two types of errors. First, if agents learned as part of the
background suddenly start moving, ghosts and holes appear in
the foreground segmentation. Second, when a moving agent
comes to stasis, it is eventually learned as a part of the
background, which may not be desirable in itself, and also
in the transition period, objects interacting with it would
not be identified. Both these problems are averted in the
present approach by combining background-model and motion
evidence, and updating based on tracking / previous motion-
history feedback.

Generally, the background model ��� at the � ��� instant is
selectively updated based on the classification results of the� ��� frame � � . Classification based on � �
	�� first results in a
set of foreground pixels ������������ � . Next, an inter-frame
motion estimation [11] is performed between � � and � �����
to delineate the set of moving foreground pixels ������������ � .
This results in single-frame latency that helps us in identifying
the regions that suddenly start moving or come to a stop.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Results of foreground detection. (a) The tempo in the red bounding
box starts moving (Frame 1628), and the tempo highlighted by blue has
already come to rest; Foreground extraction results (b) using only per pixel
Gaussian mixture model with traditional exponential forgetting; (c) with
motion detection only ( � � ) and (d) combining motion evidence with tracking
feedback ( �"! ); (e) Venn diagram indicating sets � #%$'&�( , �"�)$*&�( , � +-,�.0/1$*&�( ,��2-+-,�3 ! $'&�( and � 4�$*&�( ; (f) Final pixel classification: moving regions (yellow
and green), holes (yellow), ghosts (white) and agents at rest (pink).

Pixels identified as both foreground and moving are clearly
identified as agent pixels. Among the mismatched pixels,
moving pixels not identified as foreground, are denoted as5�7698':7������;< � �����>=? � ����� . On the other hand, the set of non-
moving pixels in 5�@����� , is given by BA �76DC
� ������;<5�������E=F��
and is identified as a possible background candidate. However,
these non-moving ghost pixels may contain actual agent re-
gions which have not shown up in the optical flow, or where
an agent has actually come to a stasis. Using information
from the motion history and tracking (discussed in Section
III) we delineate the set of agents pixels that are known to
have come to rest, �GH�����B�� A �76DC
�I����� . The set of agent pixels
that emerge from this analysis is defined as J�����K;L�� � �����E= A �76MC
�I�������7N55�76�8*:O�����7N5BGP����� . Now, the complement of J����� is
used to update the background model to ��� . The set of detected
foreground pixels J����� is further subjected to shadow removal
(based on the criteria of equality among sub-unity intensity
modulations in the Q color chanels), neighbourhood voting,
followed by connected component analysis to obtain the set
of disjoint foreground blobs R?�����K; �7SET �����%��UOVT'W � . These blobs
constitute the basic units (putative agents) that are tracked over
the entire sequence, and it is their participation in occlusion
that results in O-primtive identification, and eventually in the
activity discovery.

III. MULTI-AGENT TRACKING

Here we adopt the multi-agent tracking algorithm proposed
in [12], which works by associating the foreground blobs
at time � , S�T ����� with the predicted agent regions. The same
foreground (agent) pixel being claimed by more than one
agent (foreground blob) is one of the primary indicators of
occlusion. We define several elementary occlusion behaviors
according to the Persistence Hypothesis: Objects continue to
exist even when hidden from view. The agent-blob association



is performed over an active set X�YZ����� containing agents tracked
till the � ��� instant and also a set X 8*6DC
�I���[=]\�� of agents
which have disappeared within the viewing window. The
system initializes itself with empty sets and the agents are
(removed) added as they (dis)appear in the field of view. The
proposed approach is a two stage process. Initially, the agents
in X Y ���B=^\�� are localized in the current frame � � . This is
followed by the identification of O-primitives by the process of
agent-blob association with selective updates of agent features.

The _ ��� agent `baH����� is characterized by its supporting regionc ad����� (the set of pixels it occupies), the color distributione ad����� (weighted by the Epanechnikov kernel [8] supported
over the minimum bounding ellipse of c ad����� ) and the finite
length position history of the centers

��f a ���g=��9hi�-�7j 	"���k W G of the
minimum bounding rectangle of c a ����� . The agent features
are initially learned from the foreground blob extracted at its
very first appearance and are updated throughout the sequence
whenever it is in isolation. An estimate

fOl G-ma ����� is obtained by
extrapolating from the trajectory

�7f a ���n=o� h �-� j� k W � . The mean-
shift iterations [8], initialized at an elliptic region centered atf7l G-ma ����� further localize the agent region at c a �����Bpq�Z� .

The extent of association between a predicted agent regionc a ����� for an agent in XrYB���g=s\7��; � ` a ���n=s\7�-� � V�tHua W � and the
foreground blob

SET �����opLRq����� is estimated by constructing
a thresholded localization confidence matrix v Y�w ����� and
the attribution confidence matrix x w Y ����� . These confidences
are computed by a fractional overlap measure yn�iz �7{ z�|��?;} ~ u9� ~H�1}} ~ u } signifying the fraction of the region z � overlapped
with z�| .

v�Y�w�� _ {M��� �����g; � \d��yn� c ad����� { S�T �������B��� Y� � Otherwise
(1)

x�w YZ� �-{ _ � �����g; � \���yn� S�T ����� { c aP����������� w� � Otherwise
(2)

Where the thresholds �dY and ��w signify the extent of
allowable localization and attribution confidences. The number
of foreground regions attributed to the _ ��� agent ( v Y � _ � ������;� UOVT'W � v Y�w � _ {���� ����� and x Y � _ � �����o; � U�VT'W � x w Y � �-{ _ � ����� ) and
agents localized in

SET ����� ( v w � ��� ������; � � V�tHua W � v Y�w � _ {���� ����� andx�w�� ��� ������; � � V�tHua W � x�w"YB� �-{ _ � ����� ) are further computed from
these matrices to identify the occlusion primitives.

The _ ��� agent in X YB����=�\7� is isolated or unoccluded
( �����P�I� _ { � � ), if the localization confidence is significantly
high and the associated foreground blob is not overlapped
with other agents. However, when the agent disappears
( �������1� _ { � � ) both localization and attribution confidences fall
below �dY and ��w signifying very poor or no association of
the agent to any foreground blob. In case of partial occlu-
sions ( �������I� _ { � � ), the attribution confidence of one or more
foreground blobs to the _ ��� agent remains high, although the
localization confidence falls significantly. On the other hand,
while in a crowd ( �����J�1� _ { � � ), the localization confidence of
the _ ��� agent in the crowded blob (overlapped with more than
one agent) remains high although the attribution confidence
of that blob to the agent remains low. Thus the four Boolean

predicates for these occlusion primitives can be constructed as
follows.

�����P�I� _ { � � ; � � �0v�Y�w�� _ {���� �����g;�\ �H� �0v�w�� ��� �����g;�\ � (3)�������I� _ { � � ; �0v�YZ� _ � ������; � �H� � x�YB� _ � ������; � � (4)�������I� _ { � � ; � � �0x�w"YZ� �-{ _ � �����g;�\ �� �0v�w5� ��� �����g;�\ �H� �0x�YZ� _ � �����B�<\ � (5)�����J�I� _ { � � ; � � �0v Y�w � _ {���� ;�\ �P� �0v w � ��� �����B� \ � (6)

To obtain the current active set XrYB����� , updates are applied
to all of color, shape and trajectory of individual agents under�����P� , but only to the trajectory of agents under ������� and�����J� . Agents under ������� are moved from the active set to
the putative set. This enables the system to remain updated
with agent features while keeping track of them.

The entry/reappearance of an agent is attributed to the
existence of a foreground blob

S T ����� in the scene having
no association with any agent from X�YB���)=�\�� and is thus
detected as ����¡o� T �����¢;£�0v�w�� ��� �����o; � �"� � x�w�� ��� �����¢; � � .
The features of the new blob

S T ����� are matched against those
in X"8*6DC
�I���n=s\�� to search for the reappearance of agents. If a
match is found, the agent is moved from Xr8'6MC
�I���¤=¥\7� to X YZ�����
and a reappearance ( ����¦J�1� _ { � � ) is noted. Otherwise, a new
agent is added to X Y ����� and the system detects an entrance
( ����§��I� _ { � � ). Similarly, an agent is declared to exit the scene
( ����¨o�I� _ { � � ), if its motion predicted region lies outside the
image region and is thus removed from the active set.

IV. UNSUPERVISED AGENT CATEGORIZATION

We characterize an agent by its weighted color distribution,
occupied pixel set and trajectory. However, the instances
of the same category can have significantly different color
and motion features, thereby leaving the shape as a more
reliable descriptor. The considerable change in shape of agents
due to either local deformations or perspective distortions
demand robust shape descriptors. Shape features used in visual
computing fall in to three basic categories, viz. contour, region
and skeleton based descriptors [13]. The choice of the proper
shape feature is always a compromise between classification
power and computational complexity. The VSAM system [14]
has shown significant agent categorization performance in a
supervised learning framework by using only three simple
descriptors, viz. area, shape dispersion ©¤ª :¬« T � :
��:¬« � «D:  ® and the
apparent aspect ratio or the height to width ratio of the
minimum bounding box of the agent.

This work on the other hand, approaches the problem in an
unsupervised learning framework while employing the same
shape features (as in VSAM system) and incrementally learns
a Gaussian mixture model for each agent category. The shape
features are extracted for the first agent logged in the active
set in the multi-agent tracking stage, which initialize a mixture
model for a particular category. The system keeps track of this
agent through out its presence in the viewing domain and the
shape features are computed from the different appearances
of the agent in states of isolation to update the mixture model



of its category. The shape features are computed for every
agent in their first instantiation and are compared against the
existing mixture models of different categories. The new agent
is declared to be of a certain class, if a match is found.
Otherwise, the mixture model of the agent is declared a new
category, and the new category is initialized from the agent’s
shape features. We adopt the learning algorithm proposed
by Zivcovic [?] to construct the Gaussian mixture model.
The results of unsupervised agent categorization are further
illustrated in Section VI.

V. ACTIVITY DISCOVERY

Activities can be broadly classified into two different cate-
gories. First, Single agent actions, that are characterized by the
trajectories in agent feature-time space (e.g. a car’s trajectory
in a traffic scenario or the pose sequence exhibited by a
dancer). Second, Agent-object interactions involving two or
more participants. These activities may involve actual contact
(e.g. (dis)embarking a vehicle) or may involve interactions at a
distance (e.g. following/chasing). In terms of image space, ac-
tual contacts are necessarily reflected in O-primitive structures,
but non-contact situations do not necessarily characterized by
non-overlap. More so, the agents participating in agent-object
interactions may be either homogeneous (e.g. “car1 overtaking
car2”) or heterogeneous (e.g. “man entering the tempo”).

Both single-agent actions and agent-object interactions can
be expressed as temporal sequences of agent states (actions) or
co-occurrent states of interacting agents. Thus, the domain of
activity analysis demands efficient statistical sequence model-
ing techniques for recognizing significant temporal patterns
from the time-series data of action/interaction features. A
number of methodologies employing hidden Markov models,
time-delay neural networks, recurrent networks etc. have been
proposed for modeling and recognition of action/interaction
sequences in a supervised learning framework. On the other
hand, unsupervised learning of activity patterns have also
been proposed by trajectory clustering [15] or variable length
Markov model learning [16]. A good overview of such tech-
niques can be found in [17].

Supervised activity modeling techniques are mostly task
oriented and hence fail to capture the corpus of events from
the time-series data provided to the system. Unsupervised data
mining algorithms, on the other hand, discover the modes of
spatio-temporal patterns thereby leading to the identification
of a larger class of events. The use of VLMMs in the domain
of activity analysis was introduced for automatic modeling
of the actions in exercise sequences [18] and interactions
like handshaking [16] or overtaking of vehicles [19] in a
traffic scenario. These approaches propose to perform a vector
quantization over the agent feature and trajectory space to
generate temporally indexed agent-state sequences from video
data. These sequences are parsed further to learn VLMMs
leading to the discovery of behavioral models of varying
temporal durations.

Motion (pose) primitives derived from agent (state) trajec-
tories are a necessary set of activity descriptors but are not

sufficient as they lack the power to describe the interactions
involving agent-region contacts in the image space. We, thus
augment the activity feature space with the set of occlusion
primitives which form a more fundamental notion of inter-
action signatures. More so, we identify that the occlusion
state transition sequence form a more significant interaction
description than the occlusion state sequences themselves. In
this work, we aim to discover the interactions arising out
of agents moving in complex environments undergoing both
static and dynamic occlusions with background objects and
other agents respectively. In the following subsections we
discuss the methodologies adopted for sequence modeling and
event primitive representations for interaction modeling.

A. Unsupervised Interaction Learning

We construct event primitives for agents by combining their
occlusion states and motion primitives. The occlusion states of
isolation ( �����P� ), partial occlusion ( ������� ), crowded ( �����J� ),
disappeared ( �����¯� ), exit ( ����¨o� ), entry ( ����§�� ) and entrance
of new agent in neighborhood ( ����¡o� ) to form a ° -bit occlu-
sion driven interaction descriptor. The direction of (relative)
motion of the agent is quantized to assign one of the eight
motion primitives ±²� to ±�³ signifying the directions of East,
North-East { �9´ South-East (going anti-clockwise) respectively.
Besides, a motion primitive ±µG is used to signify the state of
stasis of the agent. The final event descriptor for a single agent
is formed by augmenting the occlusion and motion primitives
as shown in figure 3(a).

(a) (b)

Fig. 3. Event primitive descriptors. (a) Monadic Action Model: The
seven occlusion primitives and a unary motion primitive from ¶�· ¸�¹Dº¸*» 4 are
combined to obtain the single-agent atomic event descriptor. (b) Dyadic Action
model: Attentive focus (query agent) is A. Agent B, if within the attentional
window of A, is characterized by its motion relative to that of A. The two
7-vector occlusion primitives for A and B, together with this relative motion
primitive, constitute the atomic interaction descriptor. Temporally ordered
sequence of these descriptors are parsed to discover meaningful activity.

Consider a short video sequence where a person walks
across a tree from left to right in the image space from
which we sample \�¼ frames to illustrate the process of agent-
background object interaction discovery. Key frames from this



sequence are shown in figure 4(a)-(e). Incremental transition
sequence learning is performed with a maximum depth of½ ;¾\ � and a learning rate � inversely proportional to the
frame number. The growth of the activity tree is shown in
figure 4(f).

(a) (b) (c)

(d) (e)

(f)

Fig. 4. Example video sequence: Man walks left to right behind a tree.
Frames and Agent states: (a) ¿ - À : isolated; (b) Á : partially occluded, (c) Â -Ã

: disappeared, (d) Ä : partially occluded (e) ¿�Å - ¿ Ã : isolated. (f) Learning
Activity Tree. The left-most nodes are just below the root of the growing
tree. Results of incremental transition sequence learning are shown after
frames ¿ , Á , Â , Ä and ¿ Ã . Branches encode different variable length event
sequences along with relative frequencies. Thus, in column 2 (after FrameÄ ), the sequence ¶1$ÇÆ�È�ÉoÈËÊ�(
Ì
Å�Í Ã Ä1¹ corresponds to the event primitive
sequence ¶1$iÎ�$ÇÆ1(
Ì�·ÐÏ�(EÈÑ$ÇÎ5$'Ég(¬Ì�·ÐÏM(�ÈÑ$ÇÎ5$ÇÊ�(¬Ì�·Ò4%(�¹ ; i.e. the event
sequence “coming from the left and getting hidden” occurs with relative
frequency

Ã ÄIÓ among observed Ô -length sequences.

Semantic labels can be assigned to the sequences in the
occlusion-primitive space to denote different activities, and
subsequences may constitute sub-activities. For example, con-
sider the longest path

� �
�����H� { ±²�1�ÖÕ ��������� { ±×�I�ÖÕ��������� { ± G ��ÕØ��������� { ± � ��ÕØ�
�����H� { ± � �-� learned in the
activity tree from the aforementioned video that correspond to
the activity of walking across a tree from left to right. Sub-
sequences of this path viz.

� �������P� { ± � ��ÕÙ��������� { ± � �5Õ��������� { ± G �-� and
� ��������� { ± G �ÚÕ ��������� { ± � �ÚÕ�������P� { ±×�@�-� also correspond to the visually significant events

of going to hide from left to right and reappearing and

moving to the right.
We consider the agent Û to be interacting with Ü , if

the center of the minimum bounding box of the former lies
within an attentional window of the later [19]. The interaction
primitives are formed by combining the co-occurrent occlusion
states of the interacting agents (taken two at a time) along
with the motion primitive obtained from the relative velocity
between the agents (figure 3(b)). The relative motion primitive
is computed by quantizing the angle measured from the vectorÛ�Ü to the relative velocity (of B with respect to A) vectorÝÞàß Y in an anti-clockwise direction. Figure 5 shows the results
of discovering the interaction sequences of overtaking and
crossing from a traffic video.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Overtaking sequence (frame
Ã À%Ô?á Ã Á Ã ). (a)-(c) A man

on bike (Agent B, marked by red bounding box) overtaking another
man on bike (Agent A, marked by yellow bounding box) generating
a sequence ¶1$ÇÎgâE$'Æ1(¬Ì
Îgãg$'Æ@(
Ì�·Ð$'ä1(�(FÈÚ$ÇÎgâ�$Çån(
Ì9Îgãn$Çån(
Ì�·Ð$'ÔI(�(FÈ$ÇÎgâ�$'Æ1(¬Ì
Îgãg$'Æ1(¬Ì�·Ð$'æI(�(�¹ . Crossing sequence (frame ¿�æ-ä�áç¿�Ô Ã ). (d)-
(f) A car (Agent A, marked by green bounding box) crossing a
rickshaw (Agent B, marked by red bounding box) generating a se-
quence ¶1$ÇÎ â $'Æ1(¬Ì¬Î ã $'Æ1(¬Ì�·Ð$�¿M(�(èÈ $ÇÎ â $Çån(
Ì¬Î ã $Çån(
Ì�·Ð$�¿M(�(èÈ$ÇÎ â $'Æ1(¬Ì
Î ã $'Æ1(¬Ì�·Ð$�¿M(�(�¹ .

VI. RESULTS

Experiments are performed on a traffic surveillance video
of Q � minutes duration consisting of a wide variety of vehicles
like bikes, rickshaw, cars, heavy vehicles etc. along with
men and animals. The background modeling is performed by
learning pixel-wise mixture of Gaussians over the ¦�éJÛ color
space with a learning rate of êË; �ìë � \ and a diagonal co-
variance matrix í T U T � ; ��î ë � � . The foreground extraction is
performed with inter-frame motion information and selective
model update with higher layer agent position feedback.
Comparative results of foreground extraction are shown in
figure 2, Section II.

Multiple agents in the traffic video are tracked with O-
primitive identification. The tracking performance of the _ ���
agent at the � ��� instant is evaluated by the fraction of the
ground-truth region of the same ( ébad����� ) overlapped with the
region c ad����� , localized by the proposed algorithm and is thus
given by the quantity yE��é a ����� { c a ������� . Hence, if there areï A ����� number of agents present in the ground-truth marked



images at the � ��� , instant, then the overall performance ð for
a video of ñ frames is given by,

ðL; \ñóòô � W � \ï A �����
��õ l ��môa W � yE��é)ad����� { c ad�����M� (7)

The above measure of overall performance ð signifies the
average fraction of the actual agent regions (or ground-truth
regions) localized by the tracking algorithm in a certain video
sequence. The overall performance varies, as the thresholds��Y and ��w are changed. It is evident from equations 1
and 2 that, as the thresholds �HY and ��w are increased, the
detection rates of correspondences between predicted agent
regions and foreground blobs reduce and thus the rate of track
loss increases. On the other hand, too low values of these
thresholds would increase the number of false detections of the
O-primitives. Thus, to achieve optimal performances, we have
chosen ��Y<;L��w^; �ìë ö

and an overall tracking performance
of approximately

ö ¼H÷ was observed.
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Fig. 6. Surface plot of tracking time (in seconds) with respect to number of
active agents and foreground blobs

The tracking time largely depends on the number of agents
in the active and putative set along with the number of
foreground blobs. The variation of the tracking time with
respect to these two factors is shown in figure 6. It is worth
noting, that an estimate of the algorithm execution time with
respect to crowding can also be obtained from this graph. The
results of tracking in the traffic surveillance video are shown
in figure 7.

The results of multi-agent tracking are logged into a
database, where each agent is stored with its various appear-
ances (learned only when isolated), image space trajectory
and occlusion state sequence for its scene presence in the
surveillance video. These constitute the surveillance logs from
which the agent information can be retrieved with simple SQL
queries. We assume the availability of object recognition mod-
ules that can categorize the agents based on their appearance
features. A few samples from the surveillance logs (as seen in
the HTML front-end) are shown in figure 8.

We have adopted the GMM learning algorithm proposed
by Zivcovic [10] for the purpose of unsupervised agent cate-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(i) (j) (k)

Fig. 7. (a)-(k) Results of tracking in the traffic surveillance video

Fig. 8. Sample surveillance log for a car: agent appearances (left), trajec-
tories (middle) and occlusion primitive timelines (right column). Occlusion
primitives are shown (green) on each timeline.

gorization. The mixture models were learned with a learning
rate of êo; �¤ë ��� \ and the initial co-variance matrix is assumed
to be a diagonal matrix whose elements are computed from
the data vector with a coefficient of variance of

�¤ë �dø
. The

agent categorization is performed over the aforementioned
traffic video, out of which we have discovered a total of QH° ø
agents, categorized into \�ù different classes, out of which only° categories corresponded to real world objects of significance.
These are man ( ùì\ appearances), man on motorbike ( °OQ
appearances), cars ( \ ö appearances), heavy vehicles (buses,
trucks and tractors - ú appearances detected properly), tempo
( ù appearances), rickshaw ( \ ø appearances) and cow ( \û°
appearances). The other categories mostly consisted of outliers
arising due to track losses and mostly the shapes learned from



crowds. The projections of the scatter plot of the shape features
of these significant agents in the Area-Dispersion, Area-Aspect
Ratio and Dispersion-Aspect Ratio plane are shown in figure
9(a)-(c). The different appearances of the discovered agents
(of significance) are shown in figure 9(d)-(e).
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Fig. 9. Projection of shape feature scatter plot in (a) shape dispersion -
area, (b) aspect ratio - area and (c) aspect ratio - shape dispersion planes.
The appearances of discovered (d) man and rickshaw (e) cow , man on bike
, tempo , cars and heavy vehicle - tractor (ordered left to right)

The activities are learned with a maximum depth of
½ ;�\ �

and a learning rate of � � ; ïqcdü¯ý � � { �ìë � \�þ at the � ��� instant.
Activities are discovered for a particular query agent by
mining its monadic and dyadic occlusion and motion primitive
sequences. We have empirically chosen an attentional window
of size \ ë0ø times of the minimum bounding box of the agent
for all our experiments. In addition to overtaking and crossing,
we have discovered the activities of (dis)embarking vehicles
in the traffic video. The results of these interactions are shown
in figure 10.

VII. CONCLUSION

This paper demonstrates the extent to which unsupervised
activity discovery is possible merely by constructing sequences
of occlusion events along with the image plane motion.
Temporal sequences of O-primitives are posited as a powerful
tool for identifying multi-agent interactions. The computation
of occlusion is made possible by robust foreground extraction
(even in the presence of gross occlusion), that enable us to
track an agent across lengthy image sequences, the occlusion
patterns during which are a surprisingly rich indicator of the
activity involved.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Results of Activity Discovery. (a-c) Disembarking from Vehicle
(blue bounding box). (a) Tempo comes to stop (frame 1439); (b) Fragmentation
due to people disembarking (frame 1594); (c) New Agents (people) formed in
neighborhood of Tempo (frame 1624). (d-f) Embarking on vehicle (yellow
bounding box). (d) People approaching Tempo, entering its attentional horizon
(frame 1923); (e) people crowded with tempo (frame 2027); (f) people
disappear, tempo still tracked (frame 2319).

The generality of occlusion as a phenomena that pervades
all types of agent interactions clearly makes it an important
area of study. To our knowledge, this is the first work to
focus on this domain. Perhaps owing to the same reason, the
child learner also quickly becomes sensitive to the presence of
objects that are occluded from sight, and occlusion is perhaps
the key perceptual indicator for fundamental spatial notions
such as containment and contact. In addition, image-plane
motions are indicative of other perceptually salient features
such as path, source and goal, etc.

In future work, we plan to explore other low-level tools
available for activity recognition. With qualitative information
on camera calibration one can add detailed spatial character-
izations for the motions - translate left/right/towards/away,
rotate, speed-up, halt, etc. which can by themselves be in-
formative for many actions.

Event predicates are characterized by the type-of-activity
(modeled as a fine-grained image schema), the ordered set of
agents participating in it, as well as optional characteristics
such as time, place, manner etc. These arguments also emerge
from the work, as the dimensions in the feature space where
the events are discovered.

In this work, we have classified agents only by their shape
and motion characteristics, but possibly a more important
characterization is in terms of actions that an agent participates
in (e.g. what objects participate in embark/disembark events?).
This leads to a chicken-and-egg problem - one needs agents
to recognize events, and actions to characterize agents. This
will remain an important area for agent discovery for many
years to come.

Based on these low-level categories, one can build up to
higher level constructs based on several sources of additional
information:ÿ

Multimodal Learning: Given cotemporaneous linguistic
descriptions, and given the event and agent characteriza-



tion already at hand, it would be simple enough matter
to build grounded models of the head verb and its noun
subcategories.ÿ
Camera Calibration / Ground-Plane Assumption: By us-
ing camera calibration data and making ground-plane as-
sumptions for the agents in a given domain, considerable
detail can be added to the event characterizations.ÿ
Shape and Scene priors: While supervised agent and
event characterization may be extremely useful, we would
like to avoid this for some time since it limits the
scalability of the approach.

In addition to these aspects, it would be important to
extend the work to more general situations, e.g. cameras that
can move (initially with pan-tilt motions), and for dynamic
backgrounds (trees, fountains).
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