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Abstract. Experiments in infant category formation indicate a strong role for
temporal continuity and change in perceptual categorization. Computational ap-
proaches to model discovery in vision have traditionally focused on static images,
with appearance features such as shape playing an important role. In this work,
we consider integrating agent behaviours with shape for the purpose of agent
discovery. Improved algorithms for video segmentation and tracking under oc-
clusion enable us to construct models that characterize agents in terms of motion
and interaction with other objects. We present a preliminary approach for discov-
ering agents based on a combination of appearance and motion histories. Using
uncalibrated camera images, we characterize objects discovered in the scene by
their shape and motion attributes, and cluster these using agglomerative hierar-
chical clustering. Even with very simple feature sets, initial results suggest that
the approach forms reasonable clusters for diverse categories such as people, and
for very distinct clusters (animals), and performs above average on other classes.

1 Introduction

Our concepts carve nature into chunks that form more compact and efficient represen-
tations of the world. It is possible that much of our early categoriies are learned from
a single system of knowledge, based ultimately on perception [1]. If so, how does one
go about discovering these categories from the passing show? This is clearly one of
the central problems of perception, and we attempt to approach this problem from a
computational standpoint.

Temporal continuity and change plays a strong role in category formation. By three
months, infants begin to pay attention to coherently moving blobs (Spelke objects [2]),
and by six months they are sensitive to the spatiotemporal dynamics of occlusion [3].
Indeed, in significant respects, the behaviour of objects may constitute a more important
hallmark of their categorization (e.g. animacy) than appearance alone [4].

Computational models of object categorization and object recognition, on the other
hand, have focused traditionally on clustering based on appearance attributes in static
images [5]. While appearance attributes may be prior (e.g. faces), category formation
seems to be strongly tied to dynamic scenes.

In this work, we consider dynamic image sequences and use improved algorithms
for video segmentation and tracking under occlusion to construct coherent motion his-
tories and occlusion relations simulating these cognitive aspects of infant category for-
mation. The aspects of the scene that characterize agents may involve motion, shape
and their interactions with other objects, and we present an attempt to form clusters



based on the first two elements, and to form a set of features for the third. Thus, we
obtain shape and motion characteristic for each agent instance and use an average-link
hierarchical clustering algorithm to cluster agents in this combined-feature scenario.
Comparing our results with those obtained based on appearance alone shows signifi-
cant improvements in recognizing certain heterogeneous groups such as People. Thus,
through this work, we present an initial approach for discovering agents based on a
combination of appearance and motion histories.

(a) (b) (c) (d)

Fig. 1. Image sequence showing multi-agent activity in traffic (uncalibrated static camera). Ve-
hicles, people, and animals are tracked across partial and complete occlusions and identified as
agent instances. Frames (a)-(d) shows a crowd of people embarking a static tempo (marked as an
erstwhile moving object) in the foreground, while motorcycles, rickshaws, bicycles and pedestri-
ans are seen interacting along the main road.

1.1 Dynamic Image Characterization

We use an uncalibrated static camera image sequence involving simultaneous inter-
actions of tens of agents in a traffic scene, interacting with and occluding each other
(figure 1). Agents are identified as connected blobs that are capable of motion, includ-
ing those that are currently at rest. Agents constitute

�
-manifolds in the � image � time �

space, which is reduced to a set of features covering appearance and behaviour.
Behaviour of an agent can involve many aspects. Here we distinguish solitary be-

haviours (motions) from multi-agent behaviours (interactions). Based on the assump-
tion that interaction involving proximity in 3D space may result in visual occlusion, we
use occlusion, as one of the indicators of interaction. These three sets of features, then,
are central to agent recognition:

– Appearance: attributes include shape, which is captured via the summary attributes
of area, aspect ratio, and dispersedness (Perimeter � / Area).

– Motion : attributes include speed, direction change sequences, velocity change, well
as the quadratic-splined curve of the trajectory.

– Interactions: These are computed based on occlusion primitives (section 2.3) such
as isolated, occluded-by-background, occluded-by-agents, etc.

Next we highlight our approach to multi-agent tracking in crowded scenarios. Since
these algorithms have already been presented elsewhere [6] only a minimal summary is
presented below.



2 Multiple Agent Tracking

Connected regions in the foreground (2.1) that are seen to persist coherently over time
constitute agents. Agents are tracked across multiple frames, and partial or complete
occlusions are handled. The part of the image corresponding to an agent (called its
support region) is tracked across frames by associating the predicted agent regions to
foreground blobs obtained from figure-ground segmentation (2.1).

Several agents may correspond to the same blob (crowding), or a single agent may
map to several blobs (fragmentation), etc; and the nature of this mapping is also stored
in terms of several occlusion primitives sec:??. The agents are further localized by an
iterative centroid update algorithm, where their appearance (position and color) features
are used to re-estimate the agent centroids (2.2). For the purpose of prediction, agent-
blob associations are re-computed and agent models updated only for those agents
which are unoccluded by others.

Agents which have been successfully tracked at the ���	� instant comprise the active
set of agents 
���
 ��������� ��� , whereas agents which have disappeared (occluded by others,
etc) constitute the set 
�� ��� ����� � ��� - which are matched with new agents when they arise
in the scene. The system initializes itself with empty sets and agent instances are added
(removed) as they appear (disappear) in the field of view.

2.1 Foreground Extraction

Agents are identified as foreground regions based on one of two kinds of evidence: first,
as regions of change with respect to a learned background model; and second, as regions
exhibiting motion. Learning the background model in presence of agents, a challenging
problem in itself, is handled using a pixel-wise mixture of Gaussians [7], which incre-
mentally learns the background scene model in the presence of agents. However, such
an approach is prone to transient errors persisting over a number of frames (depending
on the learning rate), resulting in two types of errors. First, if agents learned as part
of the background suddenly start moving, ghosts and holes appear in the foreground
segmentation. Second, when a moving agent comes to stasis, it is eventually learned as
a part of the background, which may not be desirable in itself, and also in the transi-
tion period, objects interacting with it would not be identified. Both these problems are
averted in the present approach by combining background-model and motion evidence,
and updating based on tracking / previous motion-history feedback [6].

2.2 Agent Localization

Tracking multiple agents involve the use of their appearance models along with the tra-
jectory information. The appearance of the ���	� agent having region of support � � � ���
pixels at the �!�	� instant is represented by " � � ���$#%�'& �)( � �����'*,+�- ��.(0/21 , where & �)( � ���$#3 4 �)( � ����5!6'�)( � ���05�7��)( � ���0598: �)( � ���05;8< �)( � ���>=@? characterizes a component pixel. Thus, the ap-
pearance is a collection of pixel positions � 8: �)( � ���05;8< �)( � ����� relative to the centroid A,� � ���
of the agent pixel set and the corresponding colors � 4 �)( � ����5!6'�)( � ���05)7)�)( � ����� in the BDCFE
color space.



(a) (b) (c) (d)

Fig. 2. Results of foreground detection. (a) The tempo in the red bounding box starts moving
(Frame 1628), and the tempo highlighted by blue has already come to rest; Foreground extraction
results (b) using only per pixel Gaussian mixture model with traditional exponential forgetting;
(c) with motion detection only ( GIH ) and (d) combining motion evidence with tracking feedback
( GKJ ).

The agent-blob association is performed among the members of the active set 
 �L
 ���M��� � ���
and the set of foreground blobs N � ��� . An agent O � � ��� is considered to be associated to
the blob P � � ��� , if QR� � 8: �)( � ���05;8< �)( � �����0SFA�T � � �����VUIP � � ���LQ W#YX ( A;T � � ��� is the motion predicted
centroid obtained at the �!�	� instant).

We consider the general case where the agents �'O � � ���0�[Z9\�L/21 are associated with the
foreground blobs �'PV] � �����'^ \]!/21 . Let, _a` � ��� be a foreground pixel characterized by color
and postion as _2` � ���b# 3 4 ` � ���05�6�` � ����5)7�` � ���05 : ` � ���05 < ` � ���c=d? . We consider _2` � ��� to be the
best match of the efT pixel of the �gT associated agent, if the following are satisfied.

8_a`h� � ���I# 3 4 ` � ����5!6�` � ���05)70` � ����5 � : ` � ���05 < ` � �����jikA - �c.� � ���>= ? (1)l - �c.�)(�` � ���I#nm :Vo � iqp�&r�)( � ���ji 8_2` � � ���spLtu� (2)
v - �!.` � ���I# � �gT�5�efT��j#nw 4 6�xyw : ��z ( l - �c.�)(�` � ��� (3)

Where, { is a weighing matrix and A - �c.� � ��� is the iteratively re-estimated centroid
of the support of the �;�	� agent in the |[�	� iteartion. The best match agent-pixel index
two tupple for _2` � ��� is given by v - �c.` � ���K# � �gTg5)efTV� , which indicates the visibility of theefT pixel of the ��T agent as _}` � ��� . Thus, with respect to _2` � ��� , the centroid of O~��� � ���
can be expected to be at �A - �c.���)(L��` � ����# � : ` � ���05 < ` � �����ji � 8: ���)(L� � ����598< ���)(L� � ����� with a certain

weighted belief
l - �c.�)(�` � ��� . We re-estimate the agent centroid in the � |�S��'���	� iteration

as the weighted average of such expected centroid positions derived in |,�	� iteration as
shown in equation 5.

� - �c.� � ���I#��[�!5�eb� v - �!.` � ���I# � �95)ef��� (4)

A - �!� 1 .� � ���I#
� `@z ('�;�}�����+ - ��. �A - �c.�)(�` � ���

l - �!.�)(�` � ���� `@z ('�;� �����+ - ��.
l - �!.�)(�` � ���

(5)



The agent localization iterations are initialized with A -�� .� � ���q#�A�T � � ��� and are ter-

minated, when xyw : � p�A - �c� 1 .� � ���jikA - �c.� � ���sp���� 
 is satisfied. The results of multi-agent
tracking on a traffic video are shown in figure 1.

2.3 Interactions: Occlusion Primitives

Interactions between objects in 3D cannot be dealt with, but one may assume that ob-
jects in close proximity are likely to occlude one another (given a supra-horizon view).
The nature of this occlusion and its transitions constitute a partial signature of the inter-
action. Four types of occlusion situations are distinguished:

– Isolation ( � ��� � ): Single agent associated to single foreground blob (No occlusion).
– Crowding ( � ��� � ): More than one agents are associated to a single foreground blob

(Occluding or occluded by other agents).
– Fragmentation ( � ��� � ): Agent appears as fragmented, being associated to multiple

foreground blobs (partial occlusions).
– Disappearance ( � �	� � ): Agent unassociated to any foreground blob (Complete oc-

clusion by background objects).

In crowding/emphfragmentation situations, only the agent trajectory is updated. Ap-
pearance models are updated only for those agents which are unoccluded by other
agents/background objects. Disappeared agents are moved from 
 ��
 ������� to 
q� �d� ����� .
Foreground blobs (or fragments) unassociated to any agent in 
���
 ������� , are compared
against those in 
 � �d� ����� - if a match is not found, an entrance of a new agent is declared,
otherwise the matched agent is reinstated in 
���
 ������� . Clearly, since our recognition is
2D, many agents which re-emerge after near-complete occlusion may not be recognized
- and indeed this is the case in approximately half of such situations.

3 Agent Characterization

An agent instance O~� � � - � .� 5�� - � .� � is a space-time manifold characterized by the time
indexed set of appearances (a collection of position (  ¢¡ ) and corresponding color

( B�CFE ) vectors) and the centroid-trajectory �[A�� � ����� � � + �£� / � � + �� during its scene presence3 � - � .� 5�� - � .� � . This agent model encodes both the appearance and behavior and constitutes
part of the cognitive percept of the agent; the other aspects being its interactions with
other agents/background obejcts/scene landmarks.

This work focuses on unsupervized agent categorization based on low level features
derived from the shape and the motion. As shape features, we consider the area (number
of pixels in the support region), aspect ratio (vertical to horizontal length ratio of the
minimum bounding of the agent) and dispersedness (ratio of perimeter squared to area).
Collins et al. [8] have successfully classified people and vehicles using these simple set
of features, albeit in a supervised learning framework. The motion features include the
set of speeds, directions of motion and pointwise curvatures of the trajectory in the
image space. Such features can assist us in handling queries such as “List all high speed



vehicles”, “List all agents moving in a straight path from left to right”, “Group agents
of similar size” etc. The distributions of the shape and motion features of all the agents
are shown in figure 3. Categorizing agents with respect to their low level features are
described in further details in sub-section 3.1.
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Fig. 3. Low level shape features projected on the (a) aspect ratio - dispersedness plane, (b) area -
aspect ratio plane and (c) dispersedness - area plane; (d) Agent speed distribution in image plane;
(e) Distribution of directions of motion in image plane; (f) Agent trajectories obtained till the first¤s¥s¦s¦

frames.

Apart from these low level features, one can also categorize the agents in terms of
their behavioral features derived from their interactions with other agents/background
objects/scene landmarks. Interactions in real world often leave their imprints in terms of
image space occlusions. Thus, the interactions with other agents or background objects
can be represented by observing the O-primitive transition sequences of the concerned
agents. This might lead to behavioral descriptions like “The agent that walked accorss
the tree”. More so, one might also represent them in terms of the traversal of scene
landmark regions forming categorizations based on situations like “The agents which
eneterd from the left and travelled on the road”. Representations with higher level fea-
ture descriptors are discussed in sub-section ??.

3.1 Agent Categorization

The scene presence of the agents vary leading to the formation of variable length shape
and motion feature sets. Here, the agent OD§ is represented as a set of ceratin property ¨
as O - ] .§ #©�[ª § ���[* ��«��¬��/21 . Such forms of agent characterizations can’t be efficiently handled



by the usual approach of learning mixtures of Gaussians. Thus, we opt for “agglom-
erative hierarchical clustering algorithms” [9] which require a definition of a distance
measure between two such sets. Consider two Agents O § and O � characterized by their
respective feature sets O - ] .§ and O - ] .� . We define the distance ­ � � O - ] .§ 5�O - ] .� � between
these two agent feature sets as,

D � � O - ] .§ 5)O - ] .� �K# 1
* ��«��¬ * ��«���

� * ��«��¬��/21 � * ��«���(0/}1 p�ª § �uikª � (®p
(6)

We employ the average-link clustering algorithm as it offers a compromise between
the single-link and complete-link ones and is more robust to outliers [9]. The algorithm
initializes by assigning a cluster label to each of the agents. Thus, for a collection of
agent feature sets �'O � � *� /21 , the initial collection of clusters is given by � � � #¯O � � .
The dendogram is formed in a bottom-up approach, where each iteration reduces the
cluster number by one while merging two clusters, until finally, at the �}�	� iteration, all
the agents are assigned to a single cluster.

Consider the eg�	� iteration, where we merge two of the � �qiyeIS±°9� clusters obtained
from the � ebi²�[�!�	� step. The diameters of all possible ° -cluster mergers are computed
and the pair minimizing the same is considered for merging. We select the cluster index
pair ��³ T�5>��TV� for merging in the e´�	� iteration, if �	³ T�5��gTV�K#µw 4 6�x ³ � ­q
 ���¶� 5 � �'� , · ³ 5>��#�K¸L¸s¸ � �ki�ebSn°9� and ³ W#¹� , where ­�
 ���¶� 5 � �,� is the distance between two clusters
given by,

­q
 ���¶� 5 � �[�I# �
Q � � QMQ � � Q

º
» �V¼¾½

º
»À¿ �V¼ +

­Á� � OÁ5)OÃÂ@�
(7)

3.2 Categorizing with Shape and Motion Features

The multiple agent tracking performed on the aforementioned traffic surveillance video
yielded the discovery of �Ä# ��Å,Æ

agents. The appearances of the discovered agents
are manually inspected for generating groundtruth data, from which we observe the
existence of �sX distinct categories along with outliers (formed from track losses and
spuriou foreground detection) - Ç ��ÈIÉ w o m'�K#�� OUTLIERS (

Æ ° ) PEOPLE ( � � X ), TEMPO
( �[Ê ), BUS (

�
), TRUCK ( � ), TRACTOR (

�
), CAR ( �sÊ ), MOTORBIKE ( ËVË ), CYCLE ( ÌVÌ ),

RICKSHAW ( °9Ë ), COW ( � Å ) � .
We form the collection of agent shape feature (area, aspect ratio and dispersedness)

sets �[O - �!� ��� �c.� � *� /21 , which are subjected to the average link clustering algorithm. A
certain cluster � - ( .� in the eg�	� iteration is declared to host a certain agent category Çr� , if



the agents of that class occur with the highest frequency in � - ( .� . The sensitivity Í � � ef�
of categorizing the agent category Ç � in the e��	� iteration is thus defined as,

S � � e´�K# 1Î Ï + Î
� *gÐ ( � 1� /21 Q � - ( .� Q Ñ ��ÒI�	³ �jiy���

(8)

Where, Q Ç � Q is the total number of instances of the �;�	� category, ÒI��³ � denotes the
category of an agent (from groundtruthed data), QgÓÔQ determines the cardinality of a
cluster and Ñ � ÓV� is the Kronecker Delta function. The sensitivities of clustering with
upto °VË clusters for shape features and instances of the appearances of the discovered
agents are shown in figure 4.

In a similar manner, we construct the agent trajectory feature sets of speed direction
�[O - � � § � 
 ���dÕ * .� � *� /}1 and form �'O -dÖ Õ §)× .� � *� /21 which are subjected to hierarchical cluster-
ing. Manual inspection of the groundtruth data shows the existence of

Æ
different kinds

of trajectories along with outliers (on account of track losses) - Ç � TRAJECTORY �¶#��
OUTLIERS ( °VX9Ë ) LEFT TO RIGHT (

ÅVÅ
), FROM BOTTOM TURN LEFT ( Ë ), MOVE UP

( Ì ), RIGHT TO LEFT (
Å,Æ

), U-TURN (
�
), MOVE TO BOTTOM (

Æ
) � . Among these, there

were only � ÆV� LINEAR TRAJECTORIES. The sensitivities of detecting trajectories upto�sXVX clusters and the three distinctly discovered trajectories ( LEFT TO RIGHT , FROM
BOTTOM TURN LEFT and RIGHT TO LEFT )are shown in figure 5.

3.3 Behavior As Variable Length Occlsuion Sequences

Models of single-agent behaviors are mainly characterized by its state space trajecto-
ries. Agent categorization in a surveillance scenario in terms of its motion features have
already been discussed in sub-section 3.2. Agent-object interactions exhibit several dif-
ferent modes - the actions may involve actual contact (e.g. riding a bike, boarding or
disembarking a vehicle, grouping etc.) or may involve interactions at a distance (e.g.
following, chasing, overtaking, etc.). In terms of image space, actual contacts are nec-
essarily reflected in terms of occlusions, but non-contact situations do not necessarily
characterized by non-overlap. Thus, we believe that occlusion sequences exhibited by
an agent form visual signatures for the underlying interactions. More so, we identify
that the occlusion state transition sequence form a more significant interaction descrip-
tion than the occlusion state sequences themselves. In this work, we aim to discover
the interactions arising out of agents moving in complex environments undergoing both
static and dynamic occlusions with background objects and other agents respectively.

A number of methodologies employing hidden Markov models, time-delay neural
networks, recurrent networks etc. have been proposed for modeling and recognition of
action/interaction sequences in a supervised learning framework. On the other hand,
unsupervised learning of activity patterns have also been proposed by trajectory clus-
tering [10] or variable length Markov model learning [11]. A good overview of such
techniques can be found in [12].
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Fig. 4. Results of agent appearance discovery. Area, aspect ratio and dispersedness constitute the
appearance features of an agent. However, the cardinalities of the appearance feature sets of the
discovered agents vary due to their different frame presence. Here, we only have a measure of
distance between two such sets and thus the average link clustering algorithm is executed on a
collection of Ø'ÙsÚ (discovered) agent shape feature sets. (a) Detection rates achieved by the aver-
age link clustering algorithm computated by cros-validating with groundtruth data. (b) Instances
of appearances of discovered agents (appearances are scaled for better viewing purposes).

Supervised activity modeling techniques are mostly task oriented and hence fail to
capture the corpus of events from the time-series data provided to the system. Unsuper-
vised data mining algorithms, on the other hand, discover the modes of spatio-temporal
patterns thereby leading to the identification of a larger class of events. The use of
VLMMs in the domain of activity analysis was introduced for automatic modeling of
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Fig. 5. Detection rates achieved by the average link clustering algorithm computated by cros-
validating with groundtruth data. Sensitivity of categorization of agents by (a) Trajectory direc-
tion and (b) Trajectory form (linear versus higher order); Plotting discovered trajectories with
respect to form and direction. Linear trajectories (in image plane) of agents moving (d) Left to
Right, (e) Right to Left and (f) higher order trajectoires of Truning Left coming from Bottom.

the actions in exercise sequences [13] and interactions like handshaking [11] or over-
taking of vehicles [14] in a traffic scenario. These approaches propose to perform a
vector quantization over the agent feature and motion space to generate temporally in-
dexed agent-state sequences from video data. These sequences are parsed further to
learn VLMMs leading to the discovery of behavioral models of varying temporal dura-
tions.

Incremental Transition Sequence Learning In this work, we employ “Incremen-
tal Transition Sequence Learning” to capture the variable length sequences of occlu-
sion primitives which describe different behavior patterns. The atomic event primitives
(here, the occlusion primitives) � constitute the set Û . Our approach to mining in this
space involves the construction of an activity tree Ü®Ý whose branches represent variable
length event primitive sequences.

An empty (first in first out) buffer Ò � (of length Þ , the maximum sequence length)
and the null activity tree ÜfÝ � �;� (containing only the root node ß � ) are initialized at
the very first appearance of every ���	� agent 
�� . Each node of Ü Ý � ��� is a two tupleÜ *áà � �[5�âa� containing the primitive �Dã±Û and a real number âäã � X´5s��= signifying the
probability of occurrence of the path �[ß9��5L¸s¸L¸L5)Ü * � among the set of all possible paths
of the same length.



Let, � � �V5���� be the event primitive observed for 
F� at time � . If there is a transition
in this event primitive, i.e. if � � �95�����W#�� � �95��IiY�'� , then � � �95���� is pushed to Ò � . Let the
set of � -length paths (originating from ß � ) of Ü´Ý � �95���� , be E - ` . � �95����D#å�'& - ` .æ � �95����0�'ç>èæ /21 ,
where 7 ` is the number of � -length branches in the tree. More so, if the sequence � Ò � 3 �,ie;= � ����� ` (0/21 signify the 70�	� path of E - ` . � �95���� , then the probabilities �[â - ` .æ � �95������ ç èæ /21 of the
nodes of Ü Ý � �95���� at the ���	� depth are updated as,

â - ` .æ � �V5����I# � �éiëê ` � �����câ - ` .æ � �95��ìií�[�rSäê ` � ���!Ñ ��î ik7L� (9)

Where, ê�` � ��� is the rate of learning � -length sequences at the ���	� instant and Ñ is the
Kronecker delta function. However, in the current implementation a fixed learning rateê is employed such that êV` � ���I#�xyw :ðï 1� 5�êgñ · � .Occurence of a new event primitive results in the formation of newer variable length
sequences in the buffer. Thus, new nodes signifying this event primitve are added at
different levels of the tree thereby growing newer branches. Each new node is initialized
with an initial probability of ê ` � ��� , whereas the older node probabilities in the same
levels are penalized by multiplying with a factor of � �òi$ê ` � ����� . This ensures the self-
normalizing nature of node probability updates (as in equation 9) such that they add up
to unity at each depth.

3.4 Occlusion Interaction: Learning from O-Transitions

Consider a short video sequence where a person walks across a tree from left to right
in the image space from which we sample �sÊ frames to illustrate the process of agent-
background object interaction discovery. Key frames from this sequence are shown in
figure 6(a)-(e). Incremental transition sequence learning is performed with a maximum
depth of Þó#��sX and a learning rate ê inversely proportional to the frame number. The
growth of the activity tree is shown in figure 6(f).

Semantic labels can be assigned to the sequences in the occlusion-primitive space to
denote different activities, and subsequences may constitute sub-activities. For example,
consider the longest path ��� ��� �¶ôõ� �	ö �Iô÷� ��� ��ô÷� ��ö ��ôø� �	� ��� learned in the
activity tree from the aforementioned video that correspond to the activity of walking
across a tree from left to right. Subsequences of this path viz. �,� �	� ��ôù� ��ö ��ô� ��� ��� and �,� �	� �úôû� �	ö �úôü� ��� �0� also correspond to the visually significant
events of going to hide from left to right and reappearing and moving to the right.

4 Conclusion

In this work we have attempted to capture some cognitive notions of perceptual cat-
egory learning and attempted to devise computational analogs of this process. While
our results in terms of category discovery are clearly preliminary, we believe that the
high correlations obtained in terms of sensitivity matches (figure ??) do indeed provide
some justification for such an approach, especially given that the system operates in
completely unsupervised mode, without any information about the complex scene that
is being observed.



(f)

Fig. 6. Example video sequence: Man walks left to right behind a tree. Frames and Agent states:
(a) ý - ¥ : isolated; (b) Ú : partially occluded, (c) Ù - þ : disappeared, (d) ÿ : partially occluded (e)ý ¦ - ý�þ : isolated. (f) Learning Activity Tree. The left-most nodes are just below the root of the
growing tree. Results of incremental transition sequence learning are shown after frames ý , Ú , Ù ,ÿ and ý0þ . Branches encode different variable length event sequences along with relative frequen-
cies. Thus, in column 2 (after Frame ÿ ), the sequence ���������	��
���
 ¦�� þ[ÿ�� corresponds to the
event primitive sequence ��������������������������
���� ; i.e. the event sequence “coming from the
left and getting hidden” occurs with relative frequency þ[ÿ�� among observed Ø -length sequences.

Clearly, the results are indicative, and much work remains. In particular, charac-
terizing the interactions between objects is a very rich area, of which the occlusion
models used here only scratch the surface. In cognitive terms, the behaviour of agents
can be described compactly in terms of landmarks - and currently we are exploring the
emergence of scene landmarks with which to characterize such interaction.
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