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ABSTRACT

Tracking multiple agents in a monocular visual surveillance
system is often challenged by the phenomenon of occlusions.
Agents entering the field of view can undergo two different
forms of occlusions, either caused by crowding or due to
obstructions by background objects at finite distances from the
camera. The agents are primarily detected as foreground blobs
and are characterized by their motion history and weighted
color histograms. These features are further used for localizing
them in subsequent frames through motion prediction assisted
mean shift tracking. A number of Boolean predicates are
evaluated based on the fractional overlaps between the lo-
calized regions and foreground blobs. We construct predicates
describing a comprehensive set of possible surveillance event
primitives including entry/exit, partial or complete occlusions
by background objects, crowding, splitting of agents and
algorithm failures resulting from track loss. Instantiation of
these event primitives followed by selective feature updates
enables us to develop an effective scheme for tracking multiple
agents in relatively unconstrained environments.

I. INTRODUCTION

Automated video surveillance deals with real time obser-
vation of people or vehicles in busy environments, leading to
the activity analysis of the subjects (agents) in the field of
view. The process of detection, identification and trajectory
tracking of different agents are of prime importance in this
context, as they are parsed further to generate higher level
scene activity descriptors. A good overview of the challenges
and developments in this area can be found in [1].

This paper deals with multiple agent tracking through a
static camera in a surveillance scenario. Usual approaches
to this problem deals with tracking blobs obtained from the
process of background subtraction [2]. However, such blobs do
not necessarily correspond to individual agents, as the agents
can form a group and get detected as a single blob or an
agent can be detected as multiple blobs due to occlusions.
The W4 system [3] differentiates people from other objects
by shape and motion cues and tracks them under occlusions
by constructing appearance models and detecting body parts.
Several researchers [4], [5] have employed particle filtering
along with prior shape and motion models for multi-person
tracking in cluttered scenes. Recently, Zhao et al. [6] proposed
a Bayesian approach for tracking multiple persons under

occlusions by computing MCMC based MAP estimates with
prior informations about camera model and human appearance
along with a ground plane assumption. McKenna et al. [7], on
the other hand, presents a color based tracking algorithm that
performs in relatively unconstrained environments and works
at three levels of abstraction, viz. regions, people and groups.

(a)

(b) (c)

Fig. 1. Illustrating the proposed algorithm. (a) The flowchart of the proposed
algorithm; (b) Partially occluded agent: the agent region is marked in red; (c)
Four agents crowding together. The results of foreground detection in (b) and
(c) are marked by white rectangles

The goal of this work is to develop a formal reasoning
scheme for tracking multiple agents. The proposed approach
is based on a non-evanescence assumption on the agents
and that their deformations are continuous. The foreground
blobs are initially detected by using a co-linearity statistic [8]
based background subtraction methodology. The agents are
localized in subsequent frames by motion prediction assisted
mean-shift tracking [9]. The correspondences between the
localized agents and detected foreground blobs are established
by computing fractional overlaps which lead to the evaluation
of certain Boolean predicates. The work aims at detecting and
handling the following cases while tracking multiple agents
under occlusions.



� Isolated, unoccluded and well tracked agents� Losing track of agents� Partial occlusions� Crowding� Identifying new regions� Entry/Exit of agents� Splitting of agents
The flowchart of the proposed algorithm along with a

snapshot of the results for certain typical occlusion cases are
shown in figure 1 for illustration purposes.

Our algorithm makes no constraining assumptions regarding
the agent shape and motion models, ground plane etc. and
demonstrates that intelligent reasoning applied on a set of
easily computable predicates can provide a wealth of high level
activity information. Some salient strengths of the proposed
scheme are the following.
(a) Ability to distinguish a variety of problem situations.
(b) Using the above information to decide on the advisability

of feature updates.
(c) Inherent ability of recognizing failure situations, should

they occur.
(d) Ability to automatic track restoration at a later time
(e) No constraining assumptions related to agent shape and

motion models, ground plane, etc.
This paper presents our work through the following sections.

The co-linearity statistic based approach to background classi-
fication leading to the extraction of disjoint foreground blobs is
discussed in section II. Section III briefly describes the features
employed in characterizing the agents that facilitate localizing
the same while tracking. The proposed scheme for tracking
multiple agents by disambiguating occlusions using intelligent
reasoning is explained in section IV. Section V presents the
implementation details along with the experimental results for
a few complex situations. Finally, we conclude our work in
section VI and outline the possibilities of future extensions to
the present work.

II. FOREGROUND BLOB EXTRACTION

Efficient intrusion detection is the primary task of a smart
surveillance system and is generally achieved by the process
of background subtraction. Several techniques have been pro-
posed in the domains of feature computations for background
image representation and statistical modeling of the obtained
feature vectors. The most commonly used approaches consider
the intensity value in (normalized) RGB color space and/or
image gradients [10] as the background image features and are
statistically modeled through pixel-wise single Gaussian [2] or
mixture of Gaussian [11] or the non-parametric approach with
a Gaussian kernel function [12]. Alternate approaches through
incremental PCA [13], MRF [14] and HMM [15] have also
been proposed. Recently, Mester et al. [8] have proposed a
novel approach to change detection under varying illumination.
They have suggested the use of a co-linearity statistic built up
on the assumption of a linear signal model. In this section,
we briefly describe the co-linearity statistic based approach to
foreground extraction.

The background classification system initializes by com-
puting the reference image

�
from the first � frames

���
( ���	��

���
��
�� ) converted to normalized RGB color space,
which are assumed to be unintruded by any agent(s). Let, the
rectangular neighborhood regions of the ����
���� ��� pixel position
in
�

and
���

be ������
���� and � � ����
���� respectively. Let,  "!$# and !�# � be the respective column vectors obtained by stacking the
rows of ������
���� and � � ����
���� . Now, if no structural changes
occur in these rectangular windows, deviations from the ref-
erence vector can only happen due to multiplicative change in
illumination (assumed to be equal over the rectangular region)
and additive noise. However, it is to be noted that, neither
the observed images and nor the reference vector provides us
with the pure signal. Hence, both of them can be treated as
an additive composition of the scalar modulation of the pure
signal unit vector %&!�# and white noise.

 "!$#'�)(*!$# %+!$#-, . !$#0/  0!$# � �)(1!�# � %&!�#-, . !$# � (1)

where, ( !$# , ( !$# � and . !�# , . !�# � are the modulation and white
noise components for  !�# and  !$# � respectively. Let us define
the quantity 2 !$# � as the norm squared sum of the white noise
components . !$# , . !�# � and is given by,

20!�# �436587�:9 . !$# 9
;<,=9 . !�# � 9
; (2)

The co-linearity statistic >
!$# � is defined as the minimum
value of 20!�# � , optimized with respect to %&!�# , and can be
proved [8] to be the minimum eigen value ?�@BA�CBDFE!�# � of the matrixG !$# � GIH!$# � , where the matrix

G !�# � is defined as,G !�# � 36587�KJ  0!$#  "!$# �ML H (3)

The background model at the ����
���� ��� pixel position is thus
learned by computing the mean N�O$����
���� and the standard
deviation P+O�����
���� of the co-linearity statistic > !�# � for the �
training frames. The Chebyshev inequality [16] ensures that�8��QSRT�U � fraction of the values taken by the random variable
lie within ( N O ����
����6VXW�P O ����
���� ) irrespective of the distribution.
Hence, we define the set of foreground pixels Y � for a new
image

�Z�
( �\[]� ) as,

Y � �_^ �Z� ����
�����`a>
!�# �<b Nc!$#�,]W�P1!�#0d (4)

The value of We�_f�� g was empirically observed to provide
the best performance. However, it is worth noting that the use
of the co-linearity statistic doesn’t ensure automatic shadow
removal. A number of algorithms have addressed the issue of
shadow removal. Javed et al. [10] have suggested the use of
gradient direction information to achieve illumination invari-
ance. Cucchiara et al. [17], on the other hand, use the hue-
saturation components to suppress the shadowed regions. Re-
cently, Branca et al. [18] have proposed an algorithm based on
the assumptions of sub-unity photometric gain and the (almost)
constancy of same in a small neighborhood of the shadowed
area. This algorithm was found to provide comparatively better
results and thus was adopted in our work. Shadow suppression



is only performed at the detected foreground pixels to achieve
reduced computations and the resulting image is subjected
to neighborhood voting corrections for classification noise
removal. Figure 2 illustrates the results of co-linearity statistic
based foreground extraction followed by the post-processing
stages. Finally, the background-foreground segmented (binary)
image at the � ��� instant is subjected to connected component
analysis (with h -connectivity) to produce the set i � consisting
of j � number of disjoint foreground blobs k C ����� .i � �l^$k C �����6
�mn�_��

���
��
�j � d (5)

(a) (b)

(c) (d)

Fig. 2. Illustrating foreground blob extraction. (a) The original scene; (b)
Result of co-linearity statistic based background subtraction; (c) Result of
shadow suppression performed on the detected foreground pixels; (d) Fore-
ground blobs after post-processing stages of neighborhood voting corrections.

III. AGENT CHARACTERIZATION

The agents are primarily detected from the extracted fore-
ground blobs and are initialized with the features computed
from the blobs. The o ��� agent is characterized by the collection
of features prq������ at the � ��� instant. The characteristic features
of the agent include the set of pixels s�q������ it occupies, its
weighted color distribution t�q������ and the trajectory of the
center >uq������ of the minimum bounding rectangle of s�q0����� for
the last v instants.

prq������<�xw�s-q0������
yt�q������6

^$>yq������6
��
�
��
�>yq����zQ{vX,|�$�ud~} (6)

The pixel set s-q0����� and weighted color distribution t�q������
are initially learned from the foreground blob extracted at
the first appearance of the agent and are updated through
out the sequence when (s)he is isolated, unoccluded and well
tracked. The color distribution t q ����� is computed from the�
-bin color histogram of the region s q ����� (in

� �
) weighted

by the Epanechnikov kernel [9] supported over the minimum
bounding ellipse of s-q������ (centered at >uq������ ) and is given by,

t qa� ��� ������� ��Z� ����a�&� @ � E
��� ��9���Q�> q �����
9 ; �8��� � Q�� 7 ���{���(7)� � � ����a�&� @ � E

��� �y96��Q�> q �����
9
;�� (8)

Where,
�Z�

is the normalizing constant computed from the
Epanechnikov kernel

� �
and the function � 7 maps the pixel

location ��������
���� to its corresponding color bin derived
from

�Z� ����
���� .
The agents in the � ��� frame are typically localized by

their trajectory information and color distribution obtained
till the ����Q)��� ��� instant. An estimate >~@��yEq ����� is obtained by
extrapolating from the trajectory ^$>6qa����Q=�$�6
��
���

�>uq����ZQ�v*�6d .
The mean-shift iterations [9], initialized at an elliptic region
centered at >�@B�yEq ����� further localize the agent region at s�q���������Z�

.

IV. PROPOSED REASONING SCHEME

In this section, we discuss the proposed reasoning scheme
for tracking multiple agents in a surveillance scenario. A
monocular surveillance system is typically challenged by the
problems of occlusion due to unavailability of adequate depth
information from a single view. In addition to tracking isolated
agents and logging entries or exits, it should also be able to
estimate approximate positions of the agents when occluded
by another agent or a background object. Occlusions caused
by agents occur in cases of crowding, where the system should
approximately locate the individual agents while differentiat-
ing the occluded ones from the occluding ones. Furthermore,
an agent can also get occluded completely by a pillar or a
tree thereby disappearing from the set of detected foreground
regions. More so, thinner background elements like a pole or
tree branches can give rise to multiple foreground regions,
which might confuse the system as an appearance of multiple
agents. These different cases of occlusions are illustrated in
figure 1. The proposed algorithm addresses each of these
issues for keeping track of individual agents by processing
low level image features guided by higher level intelligent
reasoning.

It is worth noting that maintaining an exact track of all
the agents is not always possible. As for example, when a
person hides behind a tree, the system can only provide an
approximate estimate where he has disappeared. Thus, the
process of reasoning is performed over two sets, viz. the active
and the putative set of agents. The active set � � ����� consists
of the agents that are well tracked till the � ��� instant. On
the other hand, the putative set ���-����� contains the agents
for which the system has lost track. The system typically
initializes itself with empty sets and the agents are added or
removed accordingly as they enter or leave the field of view.
During the process of reasoning, the agents are often swapped
between the active and putative sets as the track is lost or
restored. We start the process of symbolic reasoning at the� ��� frame based on the agent sets available from the ���&Q��$� ���
instant.



The image region occupied by the o ��� agent p'q����'Q����
( prq����\Q)�$� ��� � ���\Q)���6
¡o{�¢�a

���
��
�£ �¡¤ R ) in the � ��� frame
is predicted from its motion history information and is used
for initializing a mean-shift algorithm to localize it further tos�q������ . The process of association is established by computing
the overlaps between the set of predicted agent regions and the
extracted foreground regions. Equation 9 defines the fractional
overlap measure ¥¦�§� R 
�� ; � between two regions � R and � ; ,
given by the fraction of � R overlapped with � ; . It is worth
noting that ¥z��� R 
8� ; � is an asymmetric measure and lies in the
interval � g�
�� � .

¥¦�§� R 
8� ; � 36587�©¨ � R¦ª � ; ¨¨ � R ¨ / (9)

We define the matrix « �­¬ ����� whose �®o�
�m8� ��� element (oM��a

���
��
�£ �¡¤ R 
�m��¯��

�
����
�j � ) is set to � if the localization
confidence of the o ��� agent in k C ����� , given by ¥¦��s q �����6
�k C �������exceeds a certain threshold ° � and to g otherwise.

« �­¬ � o�
�m � �����n�²± � / ¥¦��s q �����6
yk C ������� b ° �g / Otherwise
(10)

Similarly, we can also define the matrix ³ ¬c� ����� whose��mu
´o"� ��� element ( me�µ�a

���
��
�j � / o=�¶��

���
��
�£ �¡¤ R ) is set to� if the attribution confidence of k C ����� to the o ��� agent, given
by ¥¦��k C ������
�s q ������� exceeds a certain threshold ° ¬ and to g
otherwise.

³ ¬c� � mu
´o � �����n�·± � / ¥¦��k C �����6
ys q ������� b ° ¬g / Otherwise
(11)

The number of foreground regions per agent ( « � � o � ����� ) and
the number of agents per foreground region ( « ¬ � m � ����� ) can be
computed by summing up along the respective columns and
rows of the matrix « �­¬ ����� . Similar quantities ( ³ � � o � ����� and³ ¬ � m � ����� ) can also be derived from ³ ¬c� ����� . Hence, a number
of measures can be defined from the thresholded localization
and attribution confidence matrices and are given by,

« � � o � �����K� DF¸� C®¹ R « �­¬ � o�
�m � �����« ¬ � m � �����K� A�¸�º0»�q ¹ R « �­¬ � o�
�m � �����³ � � o � �����K� D ¸� C®¹ R ³ ¬c� � mu
´o � �����³ ¬ � m � �����K� A�¸�º0»�q ¹ R ³ ¬c� � mu
´o � ����� (12)

The proposed reasoning scheme is performed by extensively
using the quantities introduced in equation 12 for handling the
situations introduced in section I. The following subsections
address each of these issues and defines the predicates for
identifying the same.

A. Isolated, Unoccluded and Well Tracked Agents

The o ��� agent in the active set � � ����Qx�$� is completely
visible, if it is isolated from others and not occluded by any
background objects. If this agent is properly tracked, then the
localization confidence should be significantly high. Thus, the
Boolean predicate ISOUNOCCTRK q ����� signifying the isolated,
unoccluded and well tracked state of the o ��� can be expressed
as,

ISOUNOCCTRK q �����<�½¼"m � « �­¬ � o�
�m � �����n�l� �0¾�� « ¬ � m � �����<�_� �
(13)

Once the isolated and unoccluded status of the agent is
ensured, its color distribution, pixel set and current position
are updated so as to achieve best tracking performances in the
subsequent frames.

B. Losing Track of Agents

The system might lose track of an agent due to two main
reasons. Firstly, it may fail to associate the predicted agent
region with any of the detected foreground regions, if the
agent is occluded by larger background objects, like a tree or
a pillar. Secondly, the mean-shift algorithm might fail to reach
the detected foreground region corresponding to the agent due
to inadequate motion information. In this case, the o ��� agent
under consideration will have no significant overlap with any
of the detected foreground regions. Thus, the boolean predicate
LOSTTRACK qa����� signifying the track loss of the o ��� agent can
be expressed as,

LOSTTRACK q������n� � « � � o � �����n�½g �0¾�� ³ � � o � �����n�½g � (14)

The o ��� agent is transferred from the active to the putative
set as the system loses the track of the same and none of its
current position or color distribution data are updated.

C. Partial Occlusions by Background Objects

In most practical cases, the field of view is not just a
collection of objects at infinity. There might be objects like
trees, pillars, walls, tables, etc. at finite distances from the
camera which can occlude the agents in the scene. Such
occlusions account for partial visibility or disappearance of
agents in the scene. The system loses track of an agent as
it is not detected by background subtraction under complete
occlusion and is transfered to the putative set. However, a
partially occluded agent is detected as either a single or a
collection of disjoint foreground blobs which are the respective
distorted or fragmented form of the unoccluded case. Figure
3(a)-(b) illustrates the cases of partial occlusions leading to
fragmentation of detected foreground regions. The detected
foreground blob(s) corresponding to the partially occluded
agent p'q0����� exhibit overlap(s) with the localized image regions�q������ . Thus, either of the predicates � « � � o � ����� b � � or� ³ � � o � ����� b � � can be used in this case.

Proposition 1: Partial occlusions are detected with higher
confidence by the predicate � ³ � � o � ����� b � � than � « � � o � ����� b� � .



Proof : Consider the case of the o ��� agent getting fragmented
into j disjoint foreground regions k C ����� ( mr�¿�a

���
��
�j ). The
foreground blobs being a subset of the localized agent region,¨ s-q������ ¨ [ÁÀ DC®¹ R¦¨ k C ����� ¨ and ¨ k C ����� ª s�q������ ¨ � ¨ k C ����� ¨ . Thus,
the upper bound on the localization confidence ¥¦��s�q������6
�k C �������can be derived as,

¥z�Âs q �����6
�k C �������\�¶¨ k C ����� ¨¨ s�q������ ¨¦Ã ¨ k C ����� ¨À DC®¹ R ¨ k C ����� ¨ �Ä¨ k C ����� ¨j k � (15)

Where, k � is the average size of the foreground regions.
Now, from the upper bound result obtained in 15, it can be
easily shown that,

Å �§¥¦��s-q�������
�k C ������� b ° � � Ã Å ��¨ k C ����� ¨j ¨ k � ¨ b ° � � (16)

The expression Æ ¬aÇ @ � E ÆD Æ ¬ ¸ Æ assumes non-negative values. Hence,
using Markov inequality [16], we have,

Å ��¨ k C ����� ¨j ¨ k � ¨ b ° � � Ã �° ��È ��¨ k C ����� ¨j ¨ k � ¨ �É Å � ¨ k C ����� ¨j ¨ k � ¨ b ° � � Ã �j­° �É Å �§¥¦��s-q�������
�k C ������� b ° � � Ã �j­° �É Å � � « � �Bo"� b � � � Ã �j­° � (17)

Where, È denotes the expected value of a random variable.
On the other hand, from the attribution confidence measure,
we have,

Ê m´¥z�Âk C �����6
ys q �������<�x� É Å � ³ � � o � ����� b � � �_� (18)

Thus, the predicate � ³ � �®o0� b � � is a stronger feature for
detecting the partial occlusion of the o ��� agent. However, to
obtain the above as a stronger predicate, we should ensure
that RDFË6Ì always remain lesser than ��� g . Now, there can
be a minimum of two fragments ( jÍ�ÏÎ ) and hence we
should always choose ° � [Ðg*� f . The Boolean predicate
ISOPARTOCC q������ signifying the situations of isolation and
partial occlusions can be defined as,

ISOPARTOCC q �����<� Ê m � ³ ¬c� � my
¡o � �����n�l� �0¾Ñ� « ¬ � m � �����\�_� �¾�� ³ � � o � ����� b � � (19)

The color distribution of a partially occluded agent being
unreliable, only its current position is updated.

D. Crowding

The process of associating agents with the corresponding
(detected) foreground regions is very often challenged by the
phenomenon of crowding. In this case, multiple agents group
together giving rise to a single foreground blob. More so, one

(a) (b)

(c) (d)

Fig. 3. Detecting partial occlusions and crowding (a) An agent is partially
visible, being occluded by a tree; (b) Multiple foreground regions are detected
as the result of background subtraction of (a); (c) A few agents stand together
to form a group; (d) The detected foreground region corresponding to the
agents in (c)

agent might very often occlude others while crowding. Such
events of merging of agent regions are very common in cases
of agents crossing each other, standing together, etc. Figure
3(c)-(d) shows an example of a crowding condition, where a
few agents merge to form a single foreground region. In such
cases, multiple agents will have significant overlaps with a
single foreground region. Thus, the m ��� foreground region is
detected to be congested by multiple agents if either of the
predicates � « ¬ � m � ������[)� � or � ³ ¬ � m � �����Z[=� � is true.

Proposition 2: Crowding is more efficiently detected by the
predicate � « ¬ � m � �����Z[)� � than � ³ ¬ � m � ������[)� � .

Proof : Consider the case of £ agents crowding together at
the foreground region k C ����� . The agent regions being subsets
of the foreground blob, ¨ k C ����� ¨cÒ À|Aq ¹ R ¨ s q ����� ¨ and ¨ k C ����� ªs q ����� ¨ � ¨ s q ����� ¨ . Thus, the lower bound on the attribution
confidence measure can be derived as,

¥¦��k C �����6
�s-q0�������<�Ä¨ s-q������ ¨¨ k C ����� ¨ b ¨ s�q0����� ¨À Aq ¹ R ¨ s q ����� ¨ �¢¨ s�q������ ¨£ s � (20)

Where, s � is the average size of the agents in the crowd.
This lower bound is achieved in the case of all agents grouping
together, each being fully visible. Now, by using Markov
inequality for this case, we have,

Å ��¥z�Âk C ������
�s-q0��������[Ó° ¬ ��� Å ��¨ s�q"����� ¨£ s � b ° ¬ �Å � ³ ¬ � m � �����-[½� � Ò �£e° ¬ (21)

On the other hand, from the localization confidence mea-
sure, we have,



Ê oa¥¦��s�qa�����6
�k C �������<�_� É Å � � « ¬ � m � �����Z[)� � �n�l� (22)

Thus, the condition � « ¬ � m � ������[½� � is a stronger feature for
detecting crowding at the m ��� foreground region. By similar
reasoning, as in the case of partial occlusions, we can argue
that we should always choose ° ¬ [_g��Ôf to ensure the above
proposition. The Boolean predicate CROWD C ����� signifying the
case of crowding at the m ��� foreground blob is given by,

CROWD C �����n� � « ¬ � m � �����Z[)� � (23)

The individual agents in a crowd are never localized ac-
curately with exact contour descriptions and thus the color
distributions obtained from their current positions are not
worth updating. Hence, only the current position is updated
to keep continuous track through motion information.

E. Identifying New Regions
The occurrence of a new region is either caused by the entry

of an agent or the re-appearance of one from the putative set.
Thus, a new region k C ����� does not have any prior association
(here overlap) with the agents in the active set � � ���FQÕ�$� . Now,
in case of the entry of an agent, a certain number of frames
are required for him to appear completely and hence it is not
a wise choice to learn his features from partial information
available from the initial frames. Thus, an agent detected as
the new region k C ����� is only added to the active set if its
fractional overlap with an inner region C �Z�ÕÖ��Z� (typically
chosen by leaving a few border pixels of the image from each
side) exceeds a certain threshold ° � . Hence, combining these
conditions, the boolean predicate NEWREGION C ����� signifying
the identification of a new region can be expressed as,

NEWREGION C �����n� � « ¬ � m � �����n�½g �0¾�� ³ ¬ � m � �����n�½g �¾�� ¥z�Âk C ������
 C �Z� �Z[]° � � (24)

Once it is ensured that, k C ����� is a new region, we match
its features against the agents in the putative set �4�����ZQ½��� .
If a match is found, the track of the corresponding agent is
restored by re-initializing its features computed from k C ����� and
is transfered to the active set. However, if no match is found,
occurrence of k C ����� is accounted to the appearance of a new
agent p A ¸ ( £ � �×£ �¡¤ R ,×� ) and is added to the active set.

F. Detecting Agent’s Exit
The process of detecting an agent’s exit from the field of

view is of prime importance as the system needs to identify
the agents to be removed from the active set. The exit of theo ��� agent from the boundary of the image is detected when
the fractional overlap between the region s�q������ and the inner
region C �Z� falls below �ØQÙ° � . Thus, the boolean predicate
EXIT q ����� signifying the exit of the o ��� agent is given by,

EXIT q������\� � ¥z�Âs�q������6
 C �Z� � Ã �-Q�° � � (25)

Once an agent is detected to exit from the field of view, it
is removed from the active set.

G. Splitting of Agents

A surveillance system often encounters the case of splitting,
where two or more agents might enter the scene in a group and
separate later within the field of view. In such a case, they will
be initially learned as a single agent. A split occurs when the
relative velocity between the separating agents is considerably
high. It is worth noting that a split may eventually get detected
as a fragmentation for a few frames, depending on the relative
velocity between the separating agents. Afterward, the tracker
converges on one of the agents and lose the others, which
eventually emerge as new regions and are added as new agents.
In some cases, it might also lose track of both, which are then
learned as two new agents. Figure 4 shows the sequence of
the event of split from initial stages of fragmentation detection
to identification of a new region.

(a) (b)

(c) (d)

Fig. 4. Splitting of agents (a) Two agents entering the scene together
(frame 360); (b) The agents tend to split (frame 370); (c) The system detects
fragmentation even when the agents have separated (frame 372); (d) The new
region is identified as the system loses track of one agent and is added as a
new agent marked by red rectangle (frame 374).

V. RESULTS

The proposed methodology is tested offline on sets of image
sequences obtained from outdoor surveillance settings. Here,
we have arranged for a few persons playing a chasing game
(firstly, in an open field and secondly, in an area with a
number of trees), thereby tracing out complicated trajectories
along with substantial occlusions among the agents themselves
and with the background objects (trees). Here, although the
tracking fails at several instants due to the complexity of
motion and/or severe occlusions, intelligent reasoning provides
robustness to the system by automatically resuming the track
of the agents. The view under surveillance is assumed to be
free from any intrusion for the first few ( �|�x��gag ) frames as
the system initializes. Whenever an intrusion occurs, the sys-
tem detects a change in the background and pixels belonging to



the intruder’s image region are extracted as foreground regions.
Initially, for the first few ( vM�ÙÚ ) frames, the foreground region
is only tracked using mean-shift algorithm while the motion
history is being acquired. Subsequently, the color distribution
and motion history of each subject are updated and saved in a
dynamic set. Intelligent reasoning processes this set to detect
the cases of several event primitives. The results of multi-
agent tracking by the proposed approach under both dynamic
and static occlusions are shown in figures 5 and 6 respectively.

The tracking performance of the o ��� agent at the � ��� instant
is evaluated by the fraction of the ground-truth region of
the same ( Û�q������ ) overlapped with the region s�q������ , localized
by the proposed algorithm and is thus given by the quantity¥z�ÂÛ�q������6
ys�q0������� . Hence, if there are £eÜ"����� number of agents
present in the ground-truth marked images at the � ��� , instant,
then the overall performance Ý for a video of � frames is
given by,

Ýl� ��
H� � ¹ R

�£eÜ"����� A-Þ�@
� E�q ¹ R ¥¦��Û�q�������
�s-q0������� (26)

The above measure of overall performance Ý signifies the
average fraction of the actual agent regions (or ground-truth
regions) localized by the tracking algorithm in a certain video
sequence. The overall performance varies, as the thresholds ° �
and ° ¬ are changed. It is evident from equations 10 and 11
that, as the thresholds ° � and ° ¬ are increased, the detection
rates of correspondences between predicted agent regions and
foreground blobs are reduced. On the other hand, from sections
IV-C and IV-D we learn that these thresholds should always
be maintained above g*� f . To achieve optimal performances,
we have chosen ° � �µ° ¬ �ßg*� à and ° � �ßg�� á and an
overall tracking performance of h0Î��Ôf~Ú�â was observed. The
proposed intelligent reasoning scheme for monocular visual
surveillance is implemented on a standard 1.6 GHz Pentium-
4 PC. The current implementation operates on images of
resolution 320x240 at 7.5 FPS.

VI. CONCLUSION

In this paper, we have proposed an algorithm for multiple
agent tracking while disambiguating occlusions through in-
telligent reasoning with a comprehensive set of surveillance
event primitives. The system was found to track multiple
agents satisfactorily in several complex situations. An agent
is primarily detected as a change mask by the process of
background subtraction. The surveillance system maintains a
set of different agents, where the color distribution and motion
history form the signature of each. Our algorithm processes
a dynamic set of agent signatures in an intelligent manner
to identify a variety of event primitives such as isolation,
track loss, partial or complete occlusions, crowding, splitting
and entry/exit. The proposed scheme is not restricted by any
prior agent shape/motion models or ground plane assumptions
and thus performs satisfactorily in relatively unconstrained
environments.

This work reports a significant component of our ongoing
project on semantic analysis of surveillance videos. Further
enhancements to the multi-agent tracking algorithm aims at
incorporating shape descriptors as agent signature and the use
of Kalman filters along with a more sophisticated version of
mean-shift tracking. The current algorithm is able to identify
the reliability of feature updates along with various event prim-
itives like crowding, partial occlusions, splitting and entry/exit.
The future goals include parsing of temporal sequences of
detected event primitives for the generation of scene activities
thereby leading to a truly smart surveillance system.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5. Results of tracking four persons under dynamic occlusions, while
they play a chasing game in an open field. Agent number 1, 2, 3 and 4 are
marked with green, red, yellow and blue respectively. (a) Three agents in
a circular motion, the first partially occluding the second (frame 1172); (b)
First agent partially occluding the third and the system loses the track of the
later (frame 1200); (c) The track of the third agent is automatically restored
(frame 1205); (d) Fourth agent enters the scene (frame 1379); (e) The fourth
agent partially occludes the second and the system loses the track of the later
(frame 1384); (f) The track of the second agent is automatically resumed
(frame 1395); (g) Four agents in a circular motion and are isolated from each
other (frame 1420); (h) Fourth agent chases the others and all of them are
properly tracked (frame 1457); (i) The agents are well tracked as the first
three are in a group while partially occluding each other and the fourth one
is isolated (frame 1528); (j) The system maintains the track as the chasing
game continues with dynamic occlusions among agents (frame 1622).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6. Results of tracking four persons under static and dynamic occlusions.
Agent #1, #2, #3 and #4 are marked with green, red, yellow and blue
respectively. (a) Two agents enter the scene together (frame 897); (b) Agents
#1 and #2 split and are distinguished while #3 and #4 enter (frame 917); (c)
Agent #1 disappears behind a tree and the system loses his track (frame 934);
(d) Agent #1 reappears and the track is restored automatically (frame 943);
(e) Agent #3 is partially occluded by a tree and is tracked with some success
(frame 1000); (f) The system loses track of agent #3 as he fully disappears
behind a tree (frame 1019); (g) Agent #2 partially occludes #3 and both are
well tracked, while #1 is partially occluded by a tree trunk and is tracked
with some success (frame 1053); (h) Agent #4 reappears and his track is
resumed automatically, the other three agents being isolated from each other
(frame 1071); (i) Agent #2 partially occludes #4 and the track of the later is
lost (frame 1130); (j) The track of agent #4 is automatically restored as he
comes out of occlusion - all the agents are isolated and the system continues
maintaining the track of each (frame 1148).


