Activity Discovery from Occlusion Primitives

Abstract in terms of occlusion primitives (henceforth o-primitive)

Complex multi-agent interactions result in occlusion se
guences which are a visual signature for the event. In th
work, multi-agent interactions are tracked using a set d
qualitative occlusion primitives derived based on the Pel
sistence Hypothesis (objects continue to exist even wheii
hidden from view). Variable length temporal sequences ™ (n) (©) (P)
of occlusion primitives are shown to be well-correlated
with many classes of semantically significant events. In Figure 1. A putative agent blob enters from the
surveillance applications, determining occlusion priwes right, and a person (A2) emerges (splits) out, leaving
is based on foreground blob tracking, and requires no prior Al (bicycle) in a state of stasis. A2 exits the scene
knowledge of the domain or camera calibration. New fore- ~ and Al s layered onto the image background. A new
ground blobs are identified as putative agents which may agent A3 enters from left, and merges with A1, and
undergo occlusions, split into multiple agents, merge back  together the merged blob exits from the right. Note
again, etc. Temporally significant sequences are identi-  that the semantically significant aspects of this event
fied through temporal sequence mining, and these bear Maps to a sequence of o-primitives which are inde-
high correlation with semantic categories (e.g. disem-  pendent of the shapes of the objects, the viewpoint,
barking from a vehicle involves a series of splits). Thus  €tc.
semantically significant event categroies can be recog-
nized without assuming camera calibration or any environ-
ment/agent/action model priors.

2 Occlusion Primitives

1 Introduction
The algorithm works by tracking the foreground blobs

Systems that detect events in multi-agent interactions of-and labeling several characteristic occlusion behaviacts
ten treat occlusions as a problem. On the contrary, we be-ccoridng to thePersistence Hypothesis: Objects continue
lieve that temporal sequences of occlusion phenomena conto exist even when hidden from view. This results in six pos-
stitute a qualitative signature of the underlying event- Un sible states for an agent with respect to other objectstagen
like quantitative approaches using supervised priorslier o  isolation, partial occlusion(several foreground objects in
ject / behaviour recognition, (e.g. [5, 8, 10]), occlusion One agent region)crowding (several agents in the same
signatures are fundamental to activity in a manner that is foreground region)isappearedfull occlusion or tracking
independent of imaging and does not require any priors|OSt). Additionally, two special primitives entranceand
for either agents or events, and may have cognitive cor-exitrefer to occlusion by the viewing frame itself. Figure 2
relates with developmental processes in early vision, asshows examples of different parts of a person visible from
called for in [6]. We construct variable length Markov mod- behind a tree (partial occlusion), or several people merged
els (VLMM) [4, 3] for action discovery from temporal se- together (crowding).
guences of occlusion primitives, and generate signatores f Algorithm Overview After learning a background
awide class of actions. For example, a group of people hug-model, foreground blobs (putative agents) are tracked and
ging each other, a person coming on a bicycle, getting off o-primitives associated with agents are noted. Frequently
and going into a building, a crowd of people coming out of occurring temporal chains of variable length are identified
a bus (Figure 1), are all events which have stable signaturess events of possible semantic interest.



2.1 Identifying Occlusions

, 1; A;(t), Fi(t) >
i i ©arlpillt) = {0~ %(théEV\)/ise( )= (1)
The background model is learned based on a multi-scale ’
co-linearity statistic [7]. In the current demonstratiogrv
sion, the firstl” frames{(;}~_, (in normalized RGB color Upali,j](t) = {(1)’ %(tﬁé(:v)v’ifé (t) = nr 2

space) are assumed to be unintruded by any agent(s). The
second order statistics of the background features are em- The number of foreground regions attributed to
ployed to classify the set of foreground pixels in a new im- the j* agent ©4[j](t) = .1, ©arlj,i(t) and
age(), (t > T). The detected foreground pixels are sub- Ya[j](t) = >°7, Yrali,j](t)) and agents localized in
jected to further post-processing stages (shadow suppresf;(t) (Or[i](t) = Y77 ©arlj,il(t) and Vr[il(t) =
sion, morphological corrections and connected componentzgn‘;l‘1 Upali, 7](t)) are further computed from these ma-
analysis) to obtain the set of disjoint foreground blob$att  trices. Thej*" agentinSa (¢t — 1) is isolated (unoccluded)

t" instant asF; = {F;(t)}7,. (e(I)[5, ), if the localization confidence is significantly
high and the associated foregorund blob is not overlapped
with other agents. However, when both localization and at-
tribution confidences fall below, andnr, the agent has
(disappeared) (e(D)[j,t]). In case ofpartial occlusions
(e(P)[4,1]), the attribution confidence of one or more fore-
ground blobs to thg*" agent remains high, although the lo-
calization confidence falls significantly. On the other hand
while in acrowd (e(C')[4, t]), the localization confidence of
the j** agent in the crowded blob (overlapped with more
than one agent) remains high although the attribution confi-
(@) (b) dence of that blob to the same remains low. Thus the four

. _ . _ Boolean predicates for these occlusion primitives can be
Figure 2. Cases of occlusions. (a) Partial occlusion:  c¢onstructed as follows.

agent occluded by tree is visibile as three fragmented
blobs; in this state, the agent is recognized, but its

visual characteristics are not updated. (b) Crowding: e(D[j,t] = Fi[Oarlj,i|(t) = 1] A [OF[](t) = 1[3)
multiple agents merge to form a single blob. Each eD)j, 1] = [0alf](t) = 0] A [T Al5](t) = 0] 4)
agent in the blob must be partially visible (otherwise e(P)[j,t

it is flagged aslisappeay. | = VilVra [Z’J](ti =1]

AOFR[i](t) = 1] A [Walj]() = 1]  (5)
(@Ot = Fi@arls,i] =1 N[OF[() > 1] (6)

The agent-blob association is performed ovemative Updates are applied to color, shape and trajectory of in-
setSa(t) = {A;(1)}j, containing agents tracked till the  4;iqual agents under(7), and only to , the trajectory of
¢ instant and also putativesetSp(t — 1) of agents of  agents under(P) ande(C). Agents undee(D) are moved
which have disappeared within the viewing window. The from the active set to the putative set. This enables the sys-
system initializes itself with empty sets and the agents areiem to remain updated with agent features while keeping
added (removed) as they (dis)appear in (from) the field of rack of them.
view. The;j"* agentinS,(t) is characterized by its occu- The entry/reappearance of an agent is attributed to
pied pixel seta;(t), weighted color distributiork;(f) and  the existence of a foreground blab;(¢) in the scene
the orderr trajectory of the centeg;(¢) of the minimum having no association with any agent frafy(t — 1)

bounding rectangle of;(¢). Mean-shift iterations [2] ini-  and the corresponding Boolean predicate is constructed as
tialized with the motion predicted position from the trajec  NewBLoB;(t) = [O#[i](t) = 0] A [U£[i](t) = 0]. The

tory {c;(t — t')}/._, are used to localizel;(t) in thet”"  features of the new blol’(¢) are matched against those
frame. To associate the agedf(t) with the foreground i S, (¢ — 1) to search for the reappearance of agents. If
b|0bE(t), we construct the thresholdéztalization confi- a match is found' the agent is moved fr(ﬂp(t _ 1) to

dence matrib® 4 (t) and theattribution confidence matrix Sa(t). Otherwise, a new agent is addeddq(t). Simi-
¥ra(t). These confidences are computed by a fractional|arly, an agent is declared it the scene, if its motion

_ Jwinws|

overlap measurg(w,ws) = “—= signifying the frac- predicted region lies outside the image region and is thus

[wi]

tion of the regionuv; overlapped withos. removed from the active set. The (re)appearanceraia



agent (blob) in an attentional window; (¢) around thej®* B &1
agent is represented as the Boolean predie@®|j, t] = "f o
Fi[NEWBLOB; ()] A [v(Fi(t),w;(t)) > nn]. The region ‘/7
w;(t) is typically constructed as as, x 2s, rectangle i/} |
where s, and s, are the respective width and height of (-
the minimum bounding rectangle of;(t). The thresh-
old ny is empirically set td).75 to ensure significant frac-
tional overlap with the attentional window. It is worth not-
ing, thate(N)[j,t] can occur in conjunction with one of
e(Ile(P)le(C) and is expressed accordingly.

3 Activity Discovery

Activities involving multiple agents are identified based Figure 3. Discovering the hiding activity. (a) Agent

on temporal sequences of occlusion primitiges {e,} 2, approaching tree; (b) Agent partially occluded by
that constitute amctivity involving thej agents. Temporal tree; (c) Agent hiding behind tree; (d) Agent par-
sequence mining involves finding paths in activity tree tially occluded while reappearing; (e) Agent reap-
7. An empty (first in first out) buffefs; of length L and pears completely

the activity tree7,(j) is initialized with a root nodey; at
the very first appearance of evgy) agentinS 4USp. This
ensures the discovery of variable length event sequences .. . . - . .
whose length do not e):(ceeld Each nodg of,(j) is a tf/lvo activity (Figure 3), the activity tree is learned with= 10
tupple?,, = (e, w) containing the primitive € £ and a real ?erzc})n e(ng))'m (il(n]g)tk:Ds)e)qu(eerE(;()s (61(2’))(6(1;)()];)(66(33’
numberr € (0, 1] signifying the probability of occurence ’ ' ' ’ ! ' ’ '
ihe p;h{p(, 1 Ty P Y (e(1), €(P), (D)), (e(P), (D). e(P)), (e(D), e(P), (1)),

Let ﬂ[l](i)y be7the o-primitive at thé*” depth of the (e(1), e(P), e(D), e(P)), (G(P)’G(D).’G(P)’G(I)) and .
buffer’ thje most recent one being logged at 0 and the (e(1), e(P), (D), (P), e(I)) are obtained as the paths in
last oﬁe al = L — 1. The event primitive:(j,t) € & de- the learned tree. Sub-sequences that have been learned as

tected for thejt" agent at the'" instant is pushed t,, part of this process may be labellgding to hide, coming

. S out of hiding andhiding and reappearing as the variable
l;f;[]: (;,L:arree(n.ttevent pr|m|_tve cq_?]r_lges from tf:at of_the Ere- length sequencesge(I), «(P),e(D)), (e(D),e(P), ()
,l.e.e(j,t) # e(j,t — 1). This prevents learning the )
X o and(e(I),e(P),e(D),e(P),e(I)) respectively.

variable length temporal sequences of similar events as sep From this example, we observe the efficiency of incre
.. 1 . _ (l) . b ] -

arate activites. LetB")(j. 1) = {au’(j. 1) u—1 Pethe set  onia) sequence learning for the discovery of activities of

of I-length paths (originating fromp;) of 7,(j,t). More

. ; S h variable temporal durations. More so, the event primitives
so, if the sequencef;[l — k|(t)},—, signify theb™ path  ,emselves are leanred as atomic activities as unity length

of BW(j,t), then the probabilitiegr’ (j,#)}"_, of the  sequences. However, it is worth noting that all learned se-
nodes ofT,, (j, t) at thel" depth are updated as, quences do not necessarily corrrespond to meaningful ac-
Y W) tivit_ies toa human observgr in a.particula}r surveillan@ sc
™, (G,1) = (L=m(@))m,’ (G, = 1) +m(8)d(u =) (7)  nario. Pruning the tree with an information theoretic mea-
sure [4] or a probability threshold does not solve this prob-
lem as the discovered sequences with high frequency may
not signify a meaningful activity in a specific application
domain, although a rare event might be important. Thus
a database of meaningful sequences should be constructed
by user interaction for future application specific activit
recognition purposes. Further results of activity disegve
from different video sequences are presented in Section 4.

Where,n;(¢) is the rate of learningrlength sequences at
thet!” instant and is the Kronecker delta function. How-
ever, in the current implementation a fixed learning rate
is employed such tha(t) = maz (1,7) VI. A new event
primitve is added to the tree with an intial probability of
n:(t) and the self normalizing nature of equation 7 ensures
the properties of the probability measure at each depth of
7.(j). Itis worth noting that this procedure is closely re-
lated to offline sequence mining [1] and VLMM learning .
9. 4 Testing on Complex Data

Semantic labels can be assigned to different sequences
in the occlusion-primitive space, and subsequences may The proposed algorithm has been tested on a varitey of
constitute sub-activities. For example, for théling outdoor surveillance videos consisting of single and multi



person activity, involving open spaces, woods, and traffic (figure 4(e)-(g)) are learned ds(1),e(C)) , (e(C),e(]))
situations. The results of o-primitive assisted multigmer  and (¢(1), ¢(C), ¢(I)) respectively, the former ones natu-
tracking are shown in figures 3 and 4. We chogse= 0.6, rally being subsequences of the entire process.

nr = 0.6 achieving an overall tracking accuracy&®.54%. The scene in figure 4(h)-(k) shows a complex interac-
For all the experiments, the activity trees are learned with tion between several agents, some of whom are arriving
L =5 andn = 0.01. The proposed methodology for activ- on bicycles and boarding a vehicle (this type of vehicle is
ity discovery from the results of o-primitive assisted mult  known as “tempo”). While embarkation and disembarka-
agent tracking is performed at an approximate raté.of tion scenarios are easily identified, much more can be done.
frames per second while operating 820 x 240 color im- For each tracked agent a shape and motion history is avail-
ages on d.6GH z Pentium4 PC. able, which can potentially be used to obtain clusterings in
the agent space. This possibility is highlihted in the la-
bels used in these figures which distinguish several cate-
gories (e.g. A = person, C = man+bicycle, D=tempo). This
would enable us to classify a crowd to be either homoge-
neous (e.g. all human beings) or heterogeneous ( e.g. hu-
man being(s) and vehicle(s)) and the respective event{primi
tives for an agentin the crowd can then be denoted@s,)
ande(C,). The sequenceg(!),e(Ch,), e(Cr), (D)) and
(e(I),e(Cr), e(D)) are found to correspond to the cases of
embarking a vehicle in a group andembarking a vehi-

cle alonerespectivelyDisembarking on the other hand, is
simply discovered as a process of splitting.

5 Conclusion

h) (i) » () (k) : This paper demonstrates the power of a set of occlu-
sion features called o-primitives, and temporal sequeoices
Figure 4. (a)-(d) Simple Splitting: transitions be- o-primitives are posited as a powerful tool for identifying

tween isolated, fragmented, new blob emergence. (e)- multi-agent interaptions. Wg outlin_e th.e te'mporal m_ining
(g) Joining a group and separating; (h)-(k) Complex  Process for deFectlng event hlerarph_les in this space. iA var
multi-agent interactions while embarking (h,i) and ety of compo_sne events can be distinguished based merely
disembarking (j,k) from a vehicle - isolated vehicle ~ ©On the occlusion phenomena.

followed by multiple vehicle-person mergers/splits. The o-primitives constitute only one of the many tools
available for activity recognition. Even without exterssiv

camera calibration or domain knowledge, a further charac-

The activity ofsplitting is discovered from the sequence terization of the qualitative motion in the image-space may
shown in figures 4(a)-(d), where the agents enter togetheilincludetranslate left/right/towards/awayrotate, speeding
and separate in the field of view. The mean-shift tracker up, halting etc. which can by themselves be informative in
initially converges on both of them (figure 4(b)) as they certain domains.
tend to separate, which is detected as a partial occlusion Complex activities are characterized by the type-of-
for a few frames depending on the relative velocity be- activity (predicate) as well as the ordered set of agents par
tween the agents. Later, the tracker converges on one oficipating in it, as well as other characteristics such mti
them and a new agent is formed in its neighborhood. Theplace, manneretc. (arguments). In this domain-indepdanden
activity tree is found to learn the sequencefl), ¢(P)), presentation we have not focused on agent shape or ground-
(e(P),e(I)Ne(N)), (e(I)Ne(N),e(I)), (e(1),e(P),e(I)A plane based motion characterization, but as shown in fig-
e(N)), (e(P),e(I) A e(N),e(I)) and (e(I),e(P),e(I) A ures 4(h)-(k), clustering the agents into classes based on
e(N),e(I)) apart from the unity length ones. The longest temporal characterization of motion and shape behaviours
sequencée(l),e(P),e(I) A e(N),e(I)) is found to tally ~ would immediately provide a set of arguments for the pred-
with the process of splitting. The subsequences signifyingicate, the ordering of which can also be inferred based on
the parts of the splitting process are rejected in the psoces the temporal sequence. Other quantitative measures associ
of user interaction. ated with the event such as time, location, manner, etc can

Similarly, the activities offorming a group, separat- also be inferred from the visual sequence. One of the fu-
ing from a group andforming a group and separating ture goals of this work is to unify these motion primitives,



spatial tags and quantifiers to mine a richer set of activites
leading to richer recognition semantics.
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