
Activity Discovery from Occlusion Primitives

Abstract

Complex multi-agent interactions result in occlusion se-
quences which are a visual signature for the event. In this
work, multi-agent interactions are tracked using a set of
qualitative occlusion primitives derived based on the Per-
sistence Hypothesis (objects continue to exist even when
hidden from view). Variable length temporal sequences
of occlusion primitives are shown to be well-correlated
with many classes of semantically significant events. In
surveillance applications, determining occlusion primitives
is based on foreground blob tracking, and requires no prior
knowledge of the domain or camera calibration. New fore-
ground blobs are identified as putative agents which may
undergo occlusions, split into multiple agents, merge back
again, etc. Temporally significant sequences are identi-
fied through temporal sequence mining, and these bear
high correlation with semantic categories (e.g. disem-
barking from a vehicle involves a series of splits). Thus
semantically significant event categroies can be recog-
nized without assuming camera calibration or any environ-
ment/agent/action model priors.

1 Introduction

Systems that detect events in multi-agent interactions of-
ten treat occlusions as a problem. On the contrary, we be-
lieve that temporal sequences of occlusion phenomena con-
stitute a qualitative signature of the underlying event. Un-
like quantitative approaches using supervised priors for ob-
ject / behaviour recognition, (e.g. [5, 8, 10]), occlusion
signatures are fundamental to activity in a manner that is
independent of imaging and does not require any priors
for either agents or events, and may have cognitive cor-
relates with developmental processes in early vision, as
called for in [6]. We construct variable length Markov mod-
els (VLMM) [4, 3] for action discovery from temporal se-
quences of occlusion primitives, and generate signatures for
a wide class of actions. For example, a group of people hug-
ging each other, a person coming on a bicycle, getting off
and going into a building, a crowd of people coming out of
a bus (Figure 1), are all events which have stable signatures

in terms of occlusion primitives (henceforth o-primitive).
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Figure 1. A putative agent blob enters from the
right, and a person (A2) emerges (splits) out, leaving
A1 (bicycle) in a state of stasis. A2 exits the scene
and A1 is layered onto the image background. A new
agent A3 enters from left, and merges with A1, and
together the merged blob exits from the right. Note
that the semantically significant aspects of this event
maps to a sequence of o-primitives which are inde-
pendent of the shapes of the objects, the viewpoint,
etc.

2 Occlusion Primitives

The algorithm works by tracking the foreground blobs
and labeling several characteristic occlusion behavioursac-
ccoridng to thePersistence Hypothesis: Objects continue
to exist even when hidden from view. This results in six pos-
sible states for an agent with respect to other objects/agents:
isolation, partial occlusion(several foreground objects in
one agent region),crowding (several agents in the same
foreground region),disappeared(full occlusion or tracking
lost). Additionally, two special primitives -entranceand
exit refer to occlusion by the viewing frame itself. Figure 2
shows examples of different parts of a person visible from
behind a tree (partial occlusion), or several people merged
together (crowding).

Algorithm Overview: After learning a background
model, foreground blobs (putative agents) are tracked and
o-primitives associated with agents are noted. Frequently
occurring temporal chains of variable length are identified
as events of possible semantic interest.
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2.1 Identifying Occlusions

The background model is learned based on a multi-scale
co-linearity statistic [7]. In the current demonstration ver-
sion, the firstT frames{Ωt}

T
t=1 (in normalized RGB color

space) are assumed to be unintruded by any agent(s). The
second order statistics of the background features are em-
ployed to classify the set of foreground pixels in a new im-
ageΩt (t > T ). The detected foreground pixels are sub-
jected to further post-processing stages (shadow suppres-
sion, morphological corrections and connected component
analysis) to obtain the set of disjoint foreground blobs at the
tth instant asFt = {Fi(t)}

nt

i=1.
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Figure 2. Cases of occlusions. (a) Partial occlusion:
agent occluded by tree is visibile as three fragmented
blobs; in this state, the agent is recognized, but its
visual characteristics are not updated. (b) Crowding:
multiple agents merge to form a single blob. Each
agent in the blob must be partially visible (otherwise
it is flagged asdisappear).

The agent-blob association is performed over anactive
setSA(t) = {Aj(t)}

mt

j=1 containing agents tracked till the
tth instant and also aputativesetSP (t − 1) of agents of
which have disappeared within the viewing window. The
system initializes itself with empty sets and the agents are
added (removed) as they (dis)appear in (from) the field of
view. Thejth agent inSA(t) is characterized by its occu-
pied pixel setaj(t), weighted color distributionhj(t) and
the order-τ trajectory of the centercj(t) of the minimum
bounding rectangle ofaj(t). Mean-shift iterations [2] ini-
tialized with the motion predicted position from the trajec-
tory {cj(t − t′)}τ

t′=1 are used to localizeAj(t) in the tth

frame. To associate the agentAj(t) with the foreground
blobFi(t), we construct the thresholdedlocalization confi-
dence matrixΘAF (t) and theattribution confidence matrix
ΨFA(t). These confidences are computed by a fractional
overlap measureγ(ω1, ω2) = |ω1∩ω2|

|ω1|
signifying the frac-

tion of the regionω1 overlapped withω2.

ΘAF [j, i](t) =

{

1; γ(Aj(t), Fi(t)) ≥ ηA

0; Otherwise
(1)

ΨFA[i, j](t) =

{

1; γ(Fi(t), Aj(t)) ≥ ηF

0; Otherwise
(2)

The number of foreground regions attributed to
the jth agent (ΘA[j](t) =

∑nt

i=1 ΘAF [j, i](t) and
ΨA[j](t) =

∑nt

i=1 ΨFA[i, j](t)) and agents localized in
Fi(t) (ΘF [i](t) =

∑mt−1

j=1 ΘAF [j, i](t) and ΨF [i](t) =
∑mt−1

j=1 ΨFA[i, j](t)) are further computed from these ma-
trices. Thejth agent inSA(t − 1) is isolated (unoccluded)
(ε(I)[j, t]), if the localization confidence is significantly
high and the associated foregorund blob is not overlapped
with other agents. However, when both localization and at-
tribution confidences fall belowηA andηF , the agent has
(disappeared) (ε(D)[j, t]). In case ofpartial occlusions
(ε(P )[j, t]), the attribution confidence of one or more fore-
ground blobs to thejth agent remains high, although the lo-
calization confidence falls significantly. On the other hand,
while in acrowd (ε(C)[j, t]), the localization confidence of
the jth agent in the crowded blob (overlapped with more
than one agent) remains high although the attribution confi-
dence of that blob to the same remains low. Thus the four
Boolean predicates for these occlusion primitives can be
constructed as follows.

ε(I)[j, t] = ∃i[ΘAF [j, i](t) = 1] ∧ [ΘF [i](t) = 1](3)

ε(D)[j, t] = [ΘA[j](t) = 0] ∧ [ΨA[j](t) = 0] (4)

ε(P )[j, t] = ∀i[ΨFA[i, j](t) = 1]

∧[ΘF [i](t) = 1] ∧ [ΨA[j](t) ≥ 1] (5)

ε(C)[j, t] = ∃i[ΘAF [j, i] = 1] ∧ [ΘF [i](t) > 1] (6)

Updates are applied to color, shape and trajectory of in-
dividual agents underε(I), and only to , the trajectory of
agents underε(P ) andε(C). Agents underε(D) are moved
from the active set to the putative set. This enables the sys-
tem to remain updated with agent features while keeping
track of them.

The entry/reappearance of an agent is attributed to
the existence of a foreground blobFi(t) in the scene
having no association with any agent fromSA(t − 1)
and the corresponding Boolean predicate is constructed as
NEWBLOBi(t) = [ΘF [i](t) = 0] ∧ [ΨF [i](t) = 0]. The
features of the new blobFi(t) are matched against those
in SP (t − 1) to search for the reappearance of agents. If
a match is found, the agent is moved fromSP (t − 1) to
SA(t). Otherwise, a new agent is added toSA(t). Simi-
larly, an agent is declared toexit the scene, if its motion
predicted region lies outside the image region and is thus
removed from the active set. The (re)appearance of anew



agent (blob) in an attentional windowωj(t) around thejth

agent is represented as the Boolean predicateε(N)[j, t] =
∃i[NEWBLOBi(t)] ∧ [γ(Fi(t), ωj(t)) ≥ ηN ]. The region
ωj(t) is typically constructed as a2sx × 2sy rectangle
where sx and sy are the respective width and height of
the minimum bounding rectangle ofAj(t). The thresh-
old ηN is empirically set to0.75 to ensure significant frac-
tional overlap with the attentional window. It is worth not-
ing, that ε(N)[j, t] can occur in conjunction with one of
ε(I)/ε(P )/ε(C) and is expressed accordingly.

3 Activity Discovery

Activities involving multiple agents are identified based
on temporal sequences of occlusion primitivesE = {εr}

R
r=1

that constitute anactivity involving thej agents. Temporal
sequence mining involves finding paths in anactivity tree
Tα. An empty (first in first out) bufferβj of lengthL and
the activity treeTα(j) is initialized with a root nodeρj at
the very first appearance of everyjth agent inSA∪SP . This
ensures the discovery of variable length event sequences
whose length do not exceedL. Each node ofTα(j) is a two
tuppleTn ≡ (ε, π) containing the primitiveε ∈ E and a real
numberπ ∈ (0, 1] signifying the probability of occurence
of the path{ρj , . . . , Tn}.

Let, βj [l](t) be the o-primitive at thelth depth of the
buffer, the most recent one being logged atl = 0 and the
last one atl = L − 1. The event primitiveε(j, t) ∈ E de-
tected for thejth agent at thetth instant is pushed toβj ,
iff the current event primitve changes from that of the pre-
vious, i.e. ε(j, t) 6= ε(j, t − 1). This prevents learning the
variable length temporal sequences of similar events as sep-
arate activites. Let,B(l)(j, t) = {α

(l)
u (j, t)}bl

u=1 be the set
of l-length paths (originating fromρj) of Tα(j, t). More
so, if the sequence{βj[l − k](t)}l

k=1 signify thebth path

of B(l)(j, t), then the probabilities{π(l)
u (j, t)}bl

u=1 of the
nodes ofTα(j, t) at thelth depth are updated as,

π(l)
u (j, t) = (1 − ηl(t))π

(l)
u (j, t − 1) + ηl(t)δ(u − b) (7)

Where,ηl(t) is the rate of learningl-length sequences at
thetth instant andδ is the Kronecker delta function. How-
ever, in the current implementation a fixed learning rateη

is employed such thatηl(t) = max
(

1
t
, η

)

∀l. A new event
primitve is added to the tree with an intial probability of
ηl(t) and the self normalizing nature of equation 7 ensures
the properties of the probability measure at each depth of
Tα(j). It is worth noting that this procedure is closely re-
lated to offline sequence mining [1] and VLMM learning
[9].

Semantic labels can be assigned to different sequences
in the occlusion-primitive space, and subsequences may
constitute sub-activities. For example, for thehiding
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Figure 3. Discovering the hiding activity. (a) Agent
approaching tree; (b) Agent partially occluded by
tree; (c) Agent hiding behind tree; (d) Agent par-
tially occluded while reappearing; (e) Agent reap-
pears completely

activity (Figure 3), the activity tree is learned withL = 10
andη = 0.01 and the sequences(ε(I)), (ε(P )), (ε(D)),
(ε(I), ε(P )), (ε(P ), ε(D)), (ε(D), ε(P )), (ε(P ), ε(I)),
(ε(I), ε(P ), ε(D)), (ε(P ), ε(D), ε(P )), (ε(D), ε(P ), ε(I)),
(ε(I), ε(P ), ε(D), ε(P )), (ε(P ), ε(D), ε(P ), ε(I)) and
(ε(I), ε(P ), ε(D), ε(P ), ε(I)) are obtained as the paths in
the learned tree. Sub-sequences that have been learned as
part of this process may be labelledgoing to hide, coming
out of hiding andhiding and reappearing as the variable
length sequences(ε(I), ε(P ), ε(D)), (ε(D), ε(P ), ε(I))
and(ε(I), ε(P ), ε(D), ε(P ), ε(I)) respectively.

From this example, we observe the efficiency of incre-
mental sequence learning for the discovery of activities of
variable temporal durations. More so, the event primitives
themselves are leanred as atomic activities as unity length
sequences. However, it is worth noting that all learned se-
quences do not necessarily corrrespond to meaningful ac-
tivities to a human observer in a particular surveillance sce-
nario. Pruning the tree with an information theoretic mea-
sure [4] or a probability threshold does not solve this prob-
lem as the discovered sequences with high frequency may
not signify a meaningful activity in a specific application
domain, although a rare event might be important. Thus
a database of meaningful sequences should be constructed
by user interaction for future application specific activity
recognition purposes. Further results of activity discovery
from different video sequences are presented in Section 4.

4 Testing on Complex Data

The proposed algorithm has been tested on a varitey of
outdoor surveillance videos consisting of single and multi-



person activity, involving open spaces, woods, and traffic
situations. The results of o-primitive assisted multi-person
tracking are shown in figures 3 and 4. We chooseηA = 0.6,
ηF = 0.6 achieving an overall tracking accuracy of82.54%.
For all the experiments, the activity trees are learned with
L = 5 andη = 0.01. The proposed methodology for activ-
ity discovery from the results of o-primitive assisted multi-
agent tracking is performed at an approximate rate of6.0
frames per second while operating on320 × 240 color im-
ages on a1.6GHz Pentium-4 PC.
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Figure 4. (a)-(d) Simple Splitting: transitions be-
tween isolated, fragmented, new blob emergence. (e)-
(g) Joining a group and separating; (h)-(k) Complex
multi-agent interactions while embarking (h,i) and
disembarking (j,k) from a vehicle - isolated vehicle
followed by multiple vehicle-person mergers/splits.

The activity ofsplitting is discovered from the sequence
shown in figures 4(a)-(d), where the agents enter together
and separate in the field of view. The mean-shift tracker
initially converges on both of them (figure 4(b)) as they
tend to separate, which is detected as a partial occlusion
for a few frames depending on the relative velocity be-
tween the agents. Later, the tracker converges on one of
them and a new agent is formed in its neighborhood. The
activity tree is found to learn the sequences(ε(I), ε(P )),
(ε(P ), ε(I)∧ε(N)), (ε(I)∧ε(N), ε(I)), (ε(I), ε(P ), ε(I)∧
ε(N)), (ε(P ), ε(I) ∧ ε(N), ε(I)) and (ε(I), ε(P ), ε(I) ∧
ε(N), ε(I)) apart from the unity length ones. The longest
sequence(ε(I), ε(P ), ε(I) ∧ ε(N), ε(I)) is found to tally
with the process of splitting. The subsequences signifying
the parts of the splitting process are rejected in the process
of user interaction.

Similarly, the activities offorming a group, separat-
ing from a group and forming a group and separating

(figure 4(e)-(g)) are learned as(ε(I), ε(C)) , (ε(C), ε(I))
and (ε(I), ε(C), ε(I)) respectively, the former ones natu-
rally being subsequences of the entire process.

The scene in figure 4(h)-(k) shows a complex interac-
tion between several agents, some of whom are arriving
on bicycles and boarding a vehicle (this type of vehicle is
known as “tempo”). While embarkation and disembarka-
tion scenarios are easily identified, much more can be done.
For each tracked agent a shape and motion history is avail-
able, which can potentially be used to obtain clusterings in
the agent space. This possibility is highlihted in the la-
bels used in these figures which distinguish several cate-
gories (e.g. A = person, C = man+bicycle, D=tempo). This
would enable us to classify a crowd to be either homoge-
neous (e.g. all human beings) or heterogeneous ( e.g. hu-
man being(s) and vehicle(s)) and the respective event primi-
tives for an agent in the crowd can then be denoted asε(Cm)
andε(Cr). The sequences(ε(I), ε(Cm), ε(Cr), ε(D)) and
(ε(I), ε(Cr), ε(D)) are found to correspond to the cases of
embarking a vehicle in a group andembarking a vehi-
cle alone respectively.Disembarking on the other hand, is
simply discovered as a process of splitting.

5 Conclusion

This paper demonstrates the power of a set of occlu-
sion features called o-primitives, and temporal sequencesof
o-primitives are posited as a powerful tool for identifying
multi-agent interactions. We outline the temporal mining
process for detecting event hierarchies in this space. A vari-
ety of composite events can be distinguished based merely
on the occlusion phenomena.

The o-primitives constitute only one of the many tools
available for activity recognition. Even without extensive
camera calibration or domain knowledge, a further charac-
terization of the qualitative motion in the image-space may
include translate left/right/towards/away, rotate, speeding
up, halting etc. which can by themselves be informative in
certain domains.

Complex activities are characterized by the type-of-
activity (predicate) as well as the ordered set of agents par-
ticipating in it, as well as other characteristics such as time,
place, manner etc. (arguments). In this domain-independent
presentation we have not focused on agent shape or ground-
plane based motion characterization, but as shown in fig-
ures 4(h)-(k), clustering the agents into classes based on
temporal characterization of motion and shape behaviours
would immediately provide a set of arguments for the pred-
icate, the ordering of which can also be inferred based on
the temporal sequence. Other quantitative measures associ-
ated with the event such as time, location, manner, etc can
also be inferred from the visual sequence. One of the fu-
ture goals of this work is to unify these motion primitives,



spatial tags and quantifiers to mine a richer set of activites
leading to richer recognition semantics.
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