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ABSTRACT

Complex multi-agent interactions result in occlusion se-
quences which are a visual signature for the event. In this
work, multi-agent interactions are tracked using a set of
qualitative occlusion primitives derived on the basis of the
Persistence Hypothesis - objects continue to exist even when
hidden from view. Variable length temporal sequences of
occlusion primitives are shown to be well-correlated with
many classes of semantically significant events. In surveillance
applications, determining occlusion primitives is based on
foreground blob tracking, and requires no prior knowledge of
the domain or camera calibration. New foreground blobs are
identified as putative agents which may undergo occlusions,
split into multiple agents, merge back again, etc. Significant
activities are identified through temporal sequence mining,
and these bear high correlation with semantic categories
(e.g. disembarking from a vehicle involves a series of splits).
Thus semantically significant event categories can be recog-
nized without assuming camera calibration or any environ-
ment/agent/action model priors.

I. INTRODUCTION

Object interactions in 3D space often leave their imprint
in image space in terms of occlusions. Instead of treating
occlusions as a problem, we show that temporal sequences
of occlusion phenomena constitute a qualitative signature for
large classes of events. In particular, events involving actual
contact (push, embark, hit) necessarily involve overlap in
image space for part of the event history. However, many
classes of non-contact situations also result in occlusions, and
the sequence of such occlusions can (depending on viewpoint)
lead to characterization of specific events (e.g. overtaking,
crossing). We claim that occlusions between agents, other
agents, and scene objects constitute an inexpensive and cogni-
tively important cue to reasoning about interactions in space.

Here we explore the limits of what can be learned based
on occlusion phenomena. The primary advantage of such an
approach is that unlike quantitative approaches using super-
vised priors for object behavior recognition, (e.g. [1], [2], [3]),
occlusion signatures do not require any priors for either agents
or events. From a cognitive perspective, categorizing events
by combining occlusion with other low-level features such as
trajectory and segmentation may constitute a key part of the
process leading to formation of image schema [4]. Working
together with pre-attentive cues such as image flow and mo-
tion, temporal learning in sequences of occlusion phenomena

may constitute a pre-linguistic model for concept formation for
both activities and agents. These links to cognitive processes
also reflect computational efficiencies to be gained by focusing
attention and avoiding more expensive 3D computations as
called for in [5].

In order to learn events from sequences of occlusion states,
we construct variable length temporal sequences of occlusion
primitives, and generate signatures for a wide class of actions.
For example, a group of people hugging each other, a person
coming on a bicycle, getting off and going into a building,
a crowd of people embarking a tempo (Figure 1), are all
events which have stable signatures in terms of occlusion
primitives or O-primitives. The feature set for sequence mining
constitutes of the O-primitives together with quantified motion
features.

(a) (b) (c)

Fig. 1. Embarking a tempo (a short distance public tranport on Indian roads).
(a) A crowd approaching a tempo, (b) crowd embarking tempo, (c) tempo
moving away

Occlusion mining is especially relevant for activities where
agent trajectories result in occlusion at least for part of its
scene presence. Such activities may include:� agents interacting without contact (e.g. two cars crossing

each other).� limited contact situations (e.g. two persons shaking
hands)� agents completely enclosed within other objects (e.g.
people entering a bus)� agents emerging from other objects (e.g. disembarking a
vehicle), etc.

Occlusion signatures constitute an extremely general feature
set - clearly finer discrimination calls for more object specific
features, e.g. in distinguishing actions such as hugging from
handshaking.

Once events are discovered from sequence mining, an
important discovery constitutes the number of agents involved
in the activity. These are relevant in conceptual and linguistic
models for the action. Single-agent actions correspond to



intransitive verbs in language, while multi-agent interactions
corresponding to transitive verbs. These are distinguished by
the number of objects whose features participate in the event
discovery process. Single-Agent actions like ”turning left onto
the road” are based on a monadic set of features (based on a
single agent’s motion vectors) while agent-object interactions
mostly involve some degree of occlusion in actions such as
overtake, embark, etc.

The next section presents the underlying work on fore-
ground extraction, and section III develops the algorithm for
multi-agent tracking and subsequent O-primitive identification.
The proposed approach for action/interaction learning through
incremental sequence mining is detailed in Section IV. The
experimental results of activity discovery are presented in
Section V and conclusions in section VI.

II. FOREGROUND EXTRACTION

Agents are identified as foreground regions based on one
of two kinds of evidence: first, as regions of change with
respect to a learned background model; and second, as regions
exhibiting motion. Learning the background model in presence
of agents is a challenging problem in itself. Several approaches
have been proposed to incrementally learn the background
scene model in the presence of agents. The most commonly
adopted algorithms include the computation of median [2] or
fitting (temporally evolving) Gaussian mixture models [6], [7]
on the temporal pixel color histogram of the image sequence.
These approaches continuously learn the multi-modal mixture
models with the assumption that the moving objects appear
at a certain pixel only temporarily and the true background
remains accessible to the system more frequently leading to
higher weight of the corresponding mode. However, such
an approach is prone to transient errors persisting over a
number of frames (depending on the learning rate), resulting
in two types of errors. First, if agents learned as part of the
background suddenly start moving, ghosts and holes appear in
the foreground segmentation. Second, when a moving agent
comes to stasis, it is eventually learned as a part of the
background, which may not be desirable in itself, and also
in the transition period, objects interacting with it would
not be identified. Both these problems are averted in the
present approach by combining background-model and motion
evidence, and updating based on tracking / previous motion-
history feedback.

Generally, the background model
���

at the � ��� instant is
selectively updated based on the classification results of the� ��� frame � � . Classification based on

���
	��
first results in a set

of foreground pixels ������������ � . Next, an inter-frame motion
estimation [8] is performed between � � and � ����� to delineate
the set of moving foreground pixels ������������ � . This results
in single-frame latency that helps us in identifying the regions
that suddenly start moving or come to a stop.

Pixels identified as both foreground and moving are clearly
identified as agent pixels. Among the mismatched pixels,
moving pixels not identified as foreground, are denoted as

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Results of foreground detection. (a) The tempo highlighted by red
bounding box suddenly starts moving and the tempo highlighted by blue
bounding box comes to rest (Frame 1628); Foreground extraction results (b)
using only per pixel Gaussian mixture model; (c) with moving pixel detection
only and (d) after applying both moving pixel detection and tracking feedback;
(e) A Venn diagram indicating the sets ���! #"�$ , �&%' #"�$ , �)(!*�+-,. #"�$ , ��/!(!*�0
12 3"�$
and �&4� #"�$ ; (f) Results of classifying the pixels corresponding to moving
regions (yellow and green), holes (yellow), ghosts (white) and agents coming
to rest (pink).

 �652738 ������9: � �����<;=>������� . On the other hand, the set of non-
moving pixels in >�?����� , is given by �@ �65BA
� ������9:>�������C;D �
and is identified as possible background candidate. However,
these non-moving ghost pixels may contain actual agent re-
gions which have not shown up in the optical flow, or where
an agent has actually come to a stasis. Using information
from the motion history and tracking (discussed in Section
III) we delineate the set of agents pixels that have come to
rest, FEG�����H�I @ �65BA
� ����� . The set of agent pixels that emerge
from this analysis is defined as J������9K�� � ������;L @ �65BA
� �����M�<N �652738 ������NO�EP����� . Now, the complement of J����� is used to
update the background model to

���
. The set of detected

foreground pixels J����� is further subjected to shadow removal
(based on the criteria of equality among sub-unity intensity
modulations in the Q color chanels), neighbourhood voting,
followed by connected component analysis to obtain the set
of disjoint foreground blobs RS�����T9VUCWB�����YX[ZW#\ � . These blobs
constitute the basic units (putative agents) that are tracked over



the entire sequence, and it is their participation in occlusion
that results in O-primtive identification, and eventually in the
activity discovery.

III. MULTI-AGENT TRACKING

Here we adopt the multi-agent tracking algorithm proposed
in [9], which works by comparing the foreground blobs at time� , U W ����� with the predictions based on their previous positions
and shape. The same foreground (agent) pixel being claimed
by more than one agent (foreground blob) is one of the primary
indicators of occlusion.

We define several elementary occlusion behaviors according
to the Persistence Hypothesis: Objects continue to exist
even when hidden from view. The agent-blob association is
performed over an active set ]�^������ containing agents tracked
till the � ��� instant and also a set ] 7#5BA
� ���_;a`�� of agents
which have disappeared within the viewing window. The
system initializes itself with empty sets and the agents are
added (removed) as they (dis)appear in the field of view. The
proposed approach is a two stage process. Initially, the agents
in ])^F����;b`�� are localized in the current frame � � . This is
followed by the identification of O-primitives by the process of
agent-blob association with selective updates of agent features.
This process is detailed next.

A. Agent Representation and Localization

All moving objects are considered as agents, and are de-
tected based on extracted foreground blobs and are initialized
with features computed from the blobs. Agents maintain their
identity as they are successfully tracked across frames, and
even when they are re-identified upon re-appearance. The c ���
agent dfeG����� is characterized by its supporting region (the set
of pixels it occupies, gYeG����� ), color (weighted color distributionh eG����� ) and motion (position history of minimum bounding
rectangle of gGeY����� , as its previous i centers j!eG����� .

The pixel set gYeG����� and weighted color distribution
h eG����� are

initially learned from the foreground blob extracted at the first
appearance of the agent and are then updated throughout the
sequence whenever it is in isolation. The color distributionh e ����� is computed from the k -bin color histogram of the
region g e ����� (in � � ) weighted by the Epanechnikov kernel
[10] supported over the minimum bounding ellipse of g e �����
(centered at j e ����� ) and is given by,

h eGl mon ������9 `p�q rs�tGuwvwx ��y{z}| �M~w��;Dj e �����?~��?����� m ;D�f��������� (1)

p�q 9 rs'tGu v x ��y z | �M~w��;DjBeG�����?~���� (2)

Where
p�q

is the normalizing constant computed from the
Epanechnikov kernel z | and the function � � maps the pixel
location �������)�M��� to its corresponding color bin derived
from the pixel � � ���)�M��� .

The agents in the � ��� frame are localized by their trajectory
information and color distribution obtained till the ����;�`6� ���

instant. An estimate j x E ye ����� is obtained by extrapolating from
the trajectory �6j e ����;�`����.�?�.���Bj e ����;�i��!� . The mean-shift
iterations [10], initialized at an elliptic region centered atj x E ye ����� further localize the agent region at g e ��������� � .
B. Identifying Occlusion Primitives

The extent of association between a predicted agent regiongYeG����� for an agent in ] ^ ����;�`��>9���d�eY����;�`��!� � Z��P�e \ � and the
foreground blob U W �������KRS����� is estimated by constructing
a thresholded localization confidence matrix  J^�¡������ and
the attribution confidence matrix ¢J¡&^������ . These confidences
are computed by a fractional overlap measure £C��¤ � �2¤ � �=9¥ ¦ ��§ ¦G¨?¥¥ ¦ � ¥ signifying the fraction of the region ¤ � overlapped
with ¤ � .   ^�¡ l cG��© n ������9�ª `Y«�£���g e �������MU¬W!�������F¯®Y^° « Otherwise

(3)

¢ ¡&^ l ©!�
c n ������9�ª `G«�£C�±U�WB�������Mg e �����M��²®G¡° « Otherwise
(4)

Where the thresholds ® ^ and ® ¡ signify the extent of
allowable localization and attribution confidences. The number
of foreground regions attributed to the c ��� agent (   ^ l c n ������9³ XYZW3\ �  �^�¡ l cG��© n ����� and ¢�^ l c n ������9 ³ X[ZW#\ � ¢�¡&^ l ©!�
c n ����� ) and
agents localized in UCWB����� (  �¡ l © n ������9 ³ � Z��P�e \ �  �^�¡ l cG��© n ����� and¢�¡ l © n ������9 ³ � Z��P�e \ � ¢�¡&^ l ©B�
c n ����� ) are further computed from
these matrices to identify the occlusion primitives.

(a) (b)

Fig. 3. Cases of occlusions. (a) Partial occlusion: agent occluded by tree is
visible as two fragmented blobs; in this state, the agent is recognized, but its
visual characteristics are not updated. (b) Crowding: multiple agents merge
to form a single blob.

The c ��� agent in ]�^F���´;a`�� is isolated or unoccluded
( µ��±¶P� l cG��� n ), if the localization confidence is significantly
high and the associated foreground blob is not overlapped
with other agents. However, when the agent disappears
( µ��±·¸� l cG��� n ) both localization and attribution confidences fall
below ®Y^ and ®G¡ signifying very poor or no association of
the agent to any foreground blob. In case of partial occlu-
sions ( µ¸��¹H� l cG��� n ), the attribution confidence of one or more
foreground blobs to the c ��� agent remains high, although the
localization confidence falls significantly. On the other hand,
while in a crowd ( µ�� p � l cY�M� n ), the localization confidence of
the c ��� agent in the crowded blob (overlapped with more than
one agent) remains high although the attribution confidence
of that blob to the agent remains low. Thus the four Boolean



predicates for these occlusion primitives can be constructed as
follows.

µ¸��¶º� l cY�M� n 9 »º© l   ^�¡ l cG��© n ������9¼` nP½¾l   ¡ l © n ������9I` n (5)µ¸��·¿� l cY�M� n 9 l   ^ l c n ������9 ° nP½Ll ¢ ^ l c n ������9 ° n (6)µ��±¹H� l cY�M� n 9 À<© l ¢ ¡&^ l ©!�Ác n ������9I` n½�l   ¡ l © n ������9I` nP½¾l ¢ ^ l c n �����FÂ` n (7)µ¸� p � l cG�M� n 9 »º© l  �^�¡ l cG��© n 9Ã` nP½¾l  �¡ l © n ������Ä:` n (8)

To obtain the current active set ]�^������ , updates are applied
to all of color, shape and trajectory of individual agents underµ��±¶P� , but only to the trajectory of agents under µ¸��¹H� andµ�� p � . Agents under µ��±·¸� are moved from the active set to
the putative set. This enables the system to remain updated
with agent features while keeping track of them.

The entry/reappearance of an agent is attributed to the
existence of a foreground blob UCWM����� in the scene having
no association with any agent from ]¬^�����;Ã`6� and is thus
detected as µ¸��ÅL� W ������9 l   ¡ l © n �����L9 ° n)½�l ¢ ¡ l © n ������9 ° n .
The features of the new blob U W ����� are matched against those
in ] 7#5BA
� ����;�`6� to search for the reappearance of agents. If a
match is found, the agent is moved from ] 7#5BA
� ����;�`�� to ] ^ �����
and a reappearance ( µ¸��ÆJ� l cG��� n ) is noted. Otherwise, a new
agent is added to ]�^������ and the system detects an entrance
( µ¸��Ç´� l cG�M� n ). Similarly, an agent is declared to exit the scene
( µ¸����� l cG�M� n ), if its motion predicted region lies outside the
image region and is thus removed from the active set.

IV. ACTIVITY DISCOVERY

Activities can be broadly classified into two different cate-
gories:� Single agent actions or events with a single participant,

the agent. Such actions have no object on which the action
is being performed, and correspond in natural language
syntax to the intransitive verb category (”John runs”).� Agent-object interactions, or events with two or more
participants, the agent, as well as an object on which the
action is taking place, (e.g. ”John rides a bike”) which
corresponds to the transitive verb category in syntax.

Models of single-agent behaviors are characterized by the
agent and some characterization of the temporal character of
the action - e.g. the class of trajectories the agent may take
(e.g. the path taken by a vehicle in a traffic scenario or the
pose sequence exhibited by a dancer). Activities in this class
include ”Cars drive towards the left”, ”the motorcycle joins
the road”, ”the man hides behind the tree”, etc.

Agent-object interactions exhibit several different modes -
the actions may involve actual contact (e.g. riding a bike,
boarding or disembarking a vehicle, grouping etc.) or may
involve interactions at a distance (e.g. following, chasing,
overtaking, etc.). In terms of image space, actual contacts are
necessarily reflected in O-primitive structures, but non-contact
situations do not necessarily characterized by non-overlap.
More so, the agents participating in agent-object interactions

may be either homogeneous (e.g. ”car1 overtaking car2”) or
heterogeneous (e.g. ”man entering the tempo”).

Both single-agent actions and agent-object interactions can
be expressed as temporal sequences of agent states (actions) or
co-occurrent states of interacting agents. Thus, the domain of
activity analysis demands efficient statistical sequence model-
ing techniques for recognizing significant temporal patterns
from the time-series data of action/interaction features. A
number of methodologies employing hidden Markov models,
time-delay neural networks, recurrent networks etc. have been
proposed for modeling and recognition of action/interaction
sequences in a supervised learning framework. On the other
hand, unsupervised learning of activity patterns have also
been proposed by trajectory clustering [11] or variable length
Markov model learning [12]. A good overview of such tech-
niques can be found in [13].

Supervised activity modeling techniques are mostly task
oriented and hence fail to capture the corpus of events from
the time-series data provided to the system. Unsupervised data
mining algorithms, on the other hand, discover the modes of
spatio-temporal patterns thereby leading to the identification
of a larger class of events. The use of VLMMs in the domain
of activity analysis was introduced for automatic modeling
of the actions in exercise sequences [14] and interactions
like handshaking [12] or overtaking of vehicles [15] in a
traffic scenario. These approaches propose to perform a vector
quantization over the agent feature and trajectory space to
generate temporally indexed agent-state sequences from video
data. These sequences are parsed further to learn VLMMs
leading to the discovery of behavioral models of varying
temporal durations.

Motion (pose) primitives derived from agent (state) trajec-
tories are a necessary set of activity descriptors but are not
sufficient as they lack the power to describe the interactions
involving agent-region contacts in the image space. We, thus
augment the activity feature space with the set of occlusion
primitives which form a more fundamental notion of inter-
action signatures. More so, we identify that the occlusion
state transition sequence form a more significant interaction
description than the occlusion state sequences themselves. In
this work, we aim to discover the interactions arising out
of agents moving in complex environments undergoing both
static and dynamic occlusions with background objects and
other agents respectively. In the following subsections we
discuss the methodologies adopted for sequence modeling and
event primitive representations for interaction modeling.

A. Incremental Transition Sequence Learning

Agent-agent/background object interactions are discovered
by incremental learning of temporal sequences of event prim-
itives from ÈI9É��ÊwË���ÌË \ � . It involves the construction of an
activity tree Í�Î whose branches represent the variable length
event sequences. An empty (first in first out) buffer ÏÐe of
length Ñ and the activity tree ÍÐÎ)�3cP� are initialized with a root
node Ò e at the very first appearance of every c ��� agent in])Ó�N�]&Ô . This ensures the discovery of variable length event



sequences whose length do not exceed Ñ . Each node of Í Î �3cº�
is a two tuple Í X �Ã�±Ê���Õ)� containing the primitive ÊF�SÈ and a
real number ÕD�D� ° �?` n signifying the probability of occurrence
of the path ��Ò e �.�.�?�.�BÍ X � among the set of all possible paths
of the same length.

Let, Ï�e l mon ����� be the event primitive at the m ��� depth of the
buffer, the most recent one being logged at m 9 ° and the last
one at m 9�Ñ�;Â` . The event primitive Ê6�3cY�M���¿�:È detected
for the c ��� agent at the � ��� instant is pushed to Ï�e , iff the
current event primitive changes from that of the previous, i.e.Ê��3cG������Ö9�Ê��3cG���<;�`6� . This prevents learning the variable length
temporal sequences of similar events as separate activities.
Let, � x 7×y �#cG�����J9��6Ø x 7×yÙ �#cG�����w� �
ÚÙ \ � be the set of m -length paths
(originating from Ò e ) of Í Î �3cY�M��� . More so, if the sequence�?Ï eYl m ;¯Û n �����!� 7 Ü \ � signify the k ��� path of � x 7×y �#cG����� , then the
probabilities �?Õ x 7×yÙ �3cG�����!� �
ÚÙ \ � of the nodes of Í Î �#cG����� at the m ���
depth are updated as,

Õ x 7×yÙ �#cG������9Ã�2`F;¾® 7 �������ÝÕ x 7×yÙ �3cY�M�C;²`6�&ÞO® 7 �����2����ß�;Ok�� (9)

Where, ® 7 ����� is the rate of learning m -length sequences at the� ��� instant and � is the Kronecker delta function. However, in
the current implementation a fixed learning rate ® is employed
such that ® 7 �����L9áàSgP�¸â �� ��®�ãäÀ m . A new event primitive is
added to the tree with an initial probability of ® 7 ����� and the
self normalizing nature of equation 9 ensures the properties of
the probability measure at each depth of Í Î �3cº� .
B. Unsupervised Interaction Learning

We construct event primitives for agents by combining their
occlusion states and motion primitives. The occlusion states of
isolation ( µ��±¶P� ), partial occlusion ( µ¸��¹H� ), crowded ( µ�� p � ),
disappeared ( µ¸��·¸� ), exit ( µ¸����� ), entry ( µ¸��Ç´� ) and entrance
of new agent in neighborhood ( µ¸��ÅL� ) to form a å -bit occlu-
sion driven interaction descriptor. The direction of (relative)
motion of the agent is quantized to assign one of the eight
motion primitives æ �

to æ�ç signifying the directions of East,
North-East ���2è South-East (going anti-clockwise) respectively.
Besides, a motion primitive æ E is used to signify the state of
stasis of the agent. The final event descriptor for a single agent
is formed by augmenting the occlusion and motion primitives
as shown in figure 4(a).

Consider a short video sequence where a person walks
across a tree from left to right in the image space from
which we sample `?é frames to illustrate the process of agent-
background object interaction discovery. Key frames from this
sequence are shown in figure 5(a)-(e). Incremental transition
sequence learning is performed with a maximum depth ofÑ�9ê` ° and a learning rate ® inversely proportional to the
frame number. The growth of the activity tree is shown in
figure 5(f).

Semantic labels can be assigned to the sequences
in the occlusion-primitive space to denote different
activities, and subsequences may constitute sub-
activities. For example, consider the longest path�P�Áµ¸��¶º�w�Bæ � ���?�
µ��±¹H�w�Mæ � �w���Áµ¸��·¸���Mæ�E{�w���Áµ¸��¹H�w�Bæ � ���?�
µ��±¶P���Mæ � �!�

(a) (b)

Fig. 4. Event primitive descriptors. (a) Combining occlusion and motion
states form the agent-background object interaction primitives. (b) Agent B is
considered to be interacting with A, if the center of the former lies within an
attentional window of the later. Combining the co-occurrent occlusion states
of A and B with the relative motion primitives ë:ì ( í>îÂï�ðMñ�ñ2ñ�ðÁò ) form
the agent-agent interaction primitive. Temporally ordered sequence of these
primitives are parsed further to discover significant and meaningful activity
descriptors.

learned in the activity tree from the aforementioned
video that correspond to the activity of walking across
a tree from left to right. Subsequences of this
path viz. �P�Áµ¸��¶º�w�Bæ � �w���Áµ¸��¹H���Mæ � �w�?�
µ��±·¸�w�Bæ E �!� and�P�
µ��±·¸�w�Bæ E ���?�Áµ¸��¹H���Mæ � �w���Áµ¸��¶º�w�Bæ � �w� also correspond
to the visually significant events of going to hide from left
to right and reappearing and moving to the right.

We consider the agent � to be interacting with ó , if
the center of the minimum bounding box of the former lies
within an attentional window of the later [15]. The interaction
primitives are formed by combining the co-occurrent occlusion
states of the interacting agents (taken two at a time) along
with the motion primitive obtained from the relative velocity
between the agents (figure 4(b)). The relative motion primitive
is computed by quantizing the angle measured from the vector�´ó to the relative velocity (of B with respect to A) vectorôõÐö ^ in an anti-clockwise direction. Figure 6 shows the results
of discovering the interaction sequences of overtaking and
crossing from a traffic video.

V. RESULTS

Experiments are performed on a traffic surveillance video
of Q ° minutes duration consisting of a wide variety of vehicles
like bikes, rickshaw, cars, heavy vehicles etc along with
men and animals. The background modeling is performed by
learning pixel-wise mixture of Gaussians over the Æ�÷J� color
space with a learning rate of Øø9 ° � ° ` and a diagonal co-
variance matrix ù W X W � 9a��ú�� ° � . The foreground extraction is
performed with inter-frame motion information and selective
model update with higher layer agent position feedback.
Comparative results of foreground extraction are shown in
figure 2, SectionII.



(a) (b) (c)

(d) (e)

(f)

Fig. 5. The example video sequence. Agent (a) isolated (frame û�ü¿ý ),
(b) partially occluded (frame þ ), (c) disappeared (frame ÿ&üfò ), (d) partially
occluded (frame � ), (e) isolated (frame û�ïPüFû�ò ) and moving from left to right
( ë�� ). (f) The growth of the activity tree formed by incremental transition
sequence learning after processing the frames û , þ , ÿ , � and û�ò shows the
different variable length event primitive sequences (along with their relative
frequencies of occurence) mined as its branches. As for example, consider
the � -length sequence �. ��Cü��¿ü
	F$
ð±ï�ñ ò��� in the activity tree learned upto
frame � . This implies that the event primitive sequence �. ��> ��.$Ýð±ë��M$�� ��> ���$
ð±ë��M$��ø ��> �	F$Ýð�ë�4�$�� corresponding to the activity of hiding while
moving from left to right occurs with a relative frequency of ò���� among all
observed � -length sequences.

Multiple agents in the traffic video are tracked with O-
primitive identification. The tracking performance of the c ���
agent at the � ��� instant is evaluated by the fraction of the
ground-truth region of the same ( ÷ e ����� ) overlapped with the
region g e ����� , localized by the proposed algorithm and is thus
given by the quantity £C�±÷ e �������Mg e �����M� . Hence, if there areà @ ����� number of agents present in the ground-truth marked
images at the � ��� , instant, then the overall performance � for
a video of � frames is given by,

�K9 `
�

�r � \ � `à=@P����� ���
x ��yre \ � £C�±÷ e �������Mg e �����M� (10)

The above measure of overall performance � signifies the
average fraction of the actual agent regions (or ground-truth
regions) localized by the tracking algorithm in a certain video

(a) (b) (c)

(d) (e) (f)

Fig. 6. Overtaking sequence (frame òwý��Lübòwþwò ). (a)-(c) A man
on bike (Agent B, marked by red bounding box) overtaking another
man on bike (Agent A, marked by yellow bounding box) generating
a sequence �. ����C ��.$Ýð����� ��?$
ð�ë¼ � .$�$!�  ����¬ �"�$
ð#���� �"�$
ð±ë¼ ���$�$!� ����¬ ��.$Ýð����� ��.$Ýð�ë¼ �$�$±$�� . Crossing sequence (frame û%$& =übû%�wò ). (d)-
(f) A car (Agent A, marked by green bounding box) crossing a
rickshaw (Agent B, marked by red bounding box) generating a se-
quence �. ����¬ ��.$Ýð'���� ��.$Ýð�ë¼ �ûM$±$(�  ����¬ �"�$
ð'���� �"�$
ð±ë¼ �ûM$�$(� ����¬ ��.$Ýð����� ��.$Ýð�ë¼ �ûM$±$�� .
sequence. The overall performance varies, as the thresholds®Y^ and ®G¡ are changed. It is evident from equations 3
and 4 that, as the thresholds ®G^ and ®G¡ are increased, the
detection rates of correspondences between predicted agent
regions and foreground blobs reduce and thus the rate of track
loss increases. On the other hand, too low values of these
thresholds would increase the number of false detections of the
O-primitives. Thus, to achieve optimal performances, we have
chosen ® ^ 9ø® ¡ 9 ° � ) and an overall tracking performance
of approximately )Yé+* was observed.
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Fig. 7. Surface plot of tracking time (in seconds) with respect to number of
active agents and foreground blobs

The tracking time largely depends on the number of agents
in the active and putative set along with the number of
foreground blobs. The variation of the tracking time with
respect to these two factors is shown in figure 7. It is worth
noting, that an estimate of the algorithm execution time with
respect to crowding can also be obtained from this graph. The



results of tracking in the traffic surveillance video are shown
in figure 8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(i) (j) (k)

Fig. 8. (a)-(k) Results of tracking in the traffic surveillance video

The results of multi-agent tracking are logged into a
database, where each agent is stored with its various appear-
ances (learned only when isolated), image space trajectory
and occlusion state sequence for its scene presence in the
surveillance video. These constitute the surveillance logs from
which the agent information can be retrieved with simple SQL
queries. We assume the availability of object recognition mod-
ules that can categorize the agents based on their appearance
features. A few samples from the surveillance logs (as seen in
the HTML front-end) are shown in figure 9.

The activities are learned with a maximum depth of ÑO9Ã` °
and a learning rate of ® � 9ÃàSgG�¿â �� � ° � ° `�ã at the � ��� instant.
Activities are discovered for a particular query agent by
mining its monadic and dyadic occlusion and motion primitive
sequences. We have empirically chosen an attentional window
of size `Y�-, times of the minimum bounding box of the agent
for all our experiments. In addition to overtaking and crossing,
we have discovered the activities of (dis)embarking vehicles
in the traffic video. The results of these interactions are shown
in figure 10.

VI. CONCLUSION

This paper demonstrates the power of capturing temporal
events in terms of occlusion features or O-primitives along

Fig. 9. Sample surveillance logs showing the agent appearances in the left,
trajectories in the middle and occlusion primitive timelines in the right-most
column for two cars and a tempo. The occurrence of different occlusion
primitives are drawn in green in their respective timelines.

with the image plane motion. The temporal sequences of
O-primitives are posited as a powerful tool for identifying
agent-background object / multi-agent interactions. The system
performs robust foreground extraction by using online back-
ground learning, inter-frame motion evidence and multi-agent
tracking information. The occlusion states (O-primitives) of
the agents are identified by analysing the fractional overlaps
between the supporting regions of the agents and the fore-
ground blobs. The O-primitves along with quantized (relative)
motion primitves are used to form the atomic events. Temporal
sequences of these event primitives are mined to discover
several activities like embarking, disembarking, crossing, over-
atking, hiding, re-appearing etc.

In future work, we plan to explore other low-level tools
available for activity recognition. With the mildest con-
straints on camera calibration (that it is nearly horizontal) one
may add further motion characterizations such as translate
left/right/towards/away, rotate, speeding up, halting etc. which
can by themselves be informative for many actions.

Event predicates are characterized by the type-of-activity
(modeled as a fine-grained image schema) as well as the
ordered set of agents participating in it, as well as adjunct
characteristics such as time, place, manner etc. In this work,
we have classified agents only by their shape and motion
characteristics, but possibly a more important characterization
is in terms of actions that an agent participates in (e.g. what
objects participate in embark/disembark events?). These are



(a) (b)

(c) (d)

(e) (f)

Fig. 10. Results of Activity Discovery. (a-c) Disembarking from Vehicle
(marked in blue bounding box). (a) Tempo comes to stop (frame 1439); (b)
Fragmentation due to people disembarking (frame 1594); (c) New Agents
(men) formed in neighborhood of Tempo (frame 1624). (d-f) Embarking on
vehicle (marked in yellow bounding box). (a) men in attentional window of
Tempo (frame 1923); (b) men crowded with tempo (frame 2027); (c) men
disappear, tempo still tracked (frame 2319).

important areas for further analysis.
Based on these low-level categories, one can build up to

higher level constructs based on several sources of additional
information:� Co-occurring linguistic descriptions: It would be sim-

ple enough to identify the most salient action and its
participants which would result in grounded models of
the head verb and its noun subcategories. Linguistic
text also serves as anchors for the categories learned,
preventing them from Wittgensteinian drift, and also
enabling broader clusters to form from the basic level
categories being learned here.� Camera Calibration / Ground-Plane Assumption: By us-
ing camera calibration data and making ground-plane as-
sumptions for the agents in a given domain, considerable
evidence can be added to the event characterizations.� Shape and Scene priors: Availability of agent shape
priors, while valuable, we would like to avoid for some
time since it limits the scalability of the approach.

An important consequence of our activity analysis may
relate to a long lasting debate in language acquisition - the
role of syntax in verb learning. The Syntactic Bootstrapping
view posits that the syntactic structure of verb usage informs
the learner how many arguments to expect, while the Semantic
Bootstrapping view [16] claims that children are making this
inference based on semantic cues, e.g. the prepositions. It
would appear plausible from our event-learning here that the
distinction between actions involving single agents and actions
involving agents and (linguistic) objects may be perceptually
determinable in pre-linguistic cognition based on the dimen-
sion of the feature space in which the actions are learn-able.
Thus, transitive verbs are learned in a feature space with the
dimensions of a single-agent motions, while agent-object inter-
actions involve relative-motions, as well as interactions such as
occlusion states. Thus, the semantic features of the action may
specify the number of participants as a consequence of what
is perhaps already categorized in the pre-linguistic system.
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