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We introduce the “baby designer enterprise” with the objective of learning 

grounded symbols and rules based on experience, in order to construct the know-

ledge underlying design systems. In this approach, conceptual categories emerge 

as abstractions on patterns arising from functional constraints. Eventually, 

through interaction with language users, these concepts get names, and become 

true symbols. We demonstrate this approach for symbols related to insertion tasks 

and tightness of fit. We show how a functional distinction - whether the fit is tight 

or loose - can be learned in terms of the diameters of the peg and the hole. Fur-

ther, we observe that the same category distinction can be profiled differently - 

e.g. as a state (clearance), or as a process (the act of insertion).  By having sub-

jects describe their experience in unconstrained speech, and associating words 

with the known categories for tight and loose, the frequencies of words associated 

with these can be discriminated. The resulting linguistic labels learned show that 

for the state profile, the words”tight” and ”loose” emerge, and for the action, we 

get “tight” and “easy”. Once an initial grounded symbol is available, it is argued 

that knowledge-based systems based on such symbols can be sanctioned by its 

semantics, as well as its syntax, leading to more flexible usage. 

Symbols and Design Reasoning    

Machine design systems have been used for encoding the final design, and 

for downstream functions such as analysis or manufacturing. In the attempt 

to generalize it to conceptual design, it is tempting to define a set of sym-

bols and rules for modeling a domain (knowledge-based systems) [5, 6, 7, 

11, 12, 17 and 30].  However, the word “symbol” as used in the context of 
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computers has a far narrower interpretation from that in human usage, 

which can lead to considerable inflexibility. 

 

    In computers, symbols are defined formally, i.e. only in terms of other 

symbols, and lack the connection to domain experience underlying flexible 

usage among human designers. If we may present an analogy, computer 

usages of symbols are like the understanding of a colour symbol like “red” 

by a blind man; he knows that it is an instance of something called “co-

lour”, and that ``green'' and ``blue'' are other colours, and maybe even that 

``crimson'' and ``vermilion'' are shades of ``red'', but his understanding is 

dramatically different from that of a sighted `person, because the semantics 

is not connected to direct experience. 

 

When human designers use symbols, their usage is flexible and even for 

very abstract terms, the semantics is well-grounded and they can easily 

come up with detailed instances of the idea. Computers using symbols may 

be able to provide instances for basic symbols (based on programmer defi-

nitions), but not for symbol compositions. Further, the semantics defined 

by programmers cannot take into account many contextual factors that 

may change the interpretation of a symbol; indeed, rules that apply over a 

general domain often need to be modified to fit the problem - “general 

rules never decide concrete cases” [28]. While symbolic reasoning systems 

have been used successfully in the context of design for very limited situa-

tions, we argue that they may prove difficult to scale up for the following 

reasons: 

 

 Designers often differ widely in what they mean by any term; the 

meaning of any term is rarely independent of its context. Thus at-

tempts at defining a “standardized” vocabulary may not fructify.  

 Formal semantic models, typically based on “intension”, i.e. a set 

of rules defined on other formal symbols (e.g. [24]) provide a very 

narrow, inflexible interpretation. 

 Cognitively, related terms are often organized in a loose, hierarchy 

that is defeasible - i.e. memberships can be overruled in excep-

tional situations (a “bird” may be an animal that can fly, but it may 

also be an toy resembling the animal). On the other hand hierar-

chies in computational models (ontologies) are rigid, leading to 

unforeseen failures in novel situations. 

 Crucially, symbols defined in terms of other symbols alone are un-

grounded, like the blind man’s “red”. This implies that every poss-
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ible relation with other symbols, and all possible consequences for 

actions must be explicitly encoded. Thus, it must know that after a 

wing injury, a “bird” may no longer fly, but still remain a bird. 

The number of such axioms is potentially unbounded. Grounded 

symbol semantics avoids this problem because the model of birds 

that don't fly, or the roles of wings in flight would also have 

emerged at some stage of experience, leading to a graded inference 

(“birds fly” is a rule, but it can be overruled).  

 

Learning Symbols 

 

Here we propose to treat the term “symbol” in machine design as it is 

understood by human designers, and not as in formal algebras. Thus a 

symbol would constitute a close coupling of a term or label and a semantic 

representation or “image schema” [18]. In the design context, the image 

schema may be viewed as a set of constraints abstracted from different 

design experiences. Good designs repeatedly reveal certain inter-relations 

among the design variables; we propose to learn these as image schemas 

(e.g. “clearance”, “oscillating motion”, etc.)  Such image schemas need to 

be discovered from functional associations during design exploration, 

since the functions defining them are often too complex to be modeled by 

simple rules, and in any event, the definitions may change considerably 

based on context. This may be why designers find it difficult to define 

terms they use regularly, and why it is felt that much of their knowledge 

may be implicit [28]. This discovery process must start with the simplest 

concepts and build up, which is why we call our approach the “baby de-

signer enterprise”. 
  

In earlier work, we have explored the emergence of image schemas in a 

baby designer through computational simulations [23]. Here we focus on 

learning the labels for a schema, so the resulting label-schema pair be-

comes a true symbol. We demonstrate the process by learning the simple 

distinction between tight and loose fits. The baby designer is given a set of 

explicit performance measures and show how graded, grounded schemas 

can emerge based on this functional distinction.  

 

Subsequently, we consider the baby designer as interacting with a human 

expert, who describes the different situations using language. In this inte-

raction, we assume no knowledge of language or grammar; all we assume 

is that the system is that the human narratives is available as word-

separated text rather than raw speech data (human infants show good 
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word-boundary separation skills starting around 9 months of age). Then we 

show how our computational baby can learn some labels merely by consi-

dering the frequency of words that are associated with these conceptual 

distinctions. Thus, the system now has a symbol in terms of both its label 

and its grounded semantics. The semantics for it may now broaden with 

further exposure.  This approach has also been attempted in other domains 

([14, 27 and 29]). 

 

   We observe now that the semantics of a symbol is much more than 

just its referent. The semantics also encodes many subjective aspects, such 

as how the referent is being viewed - how it is being profiled [19]. For ex-

ample, entering a space may be profiled either as an action (process, “en-

ter”) or as a whole unit (atemporal relation, “into”). Though the conceptual 

structure is largely the same, there is a subtle difference caused by the fo-

cus on different aspects of the same structure. Thus the process view 

would accept temporal modifiers, the state view would not. This led us to 

conduct two different experiments for collecting language narratives. In 

the first, we ask the users to describe, in unconstrained English, their expe-

rience with an already assembled peg and hole. In the second we ask them 

to describe the experience of putting the peg into the hole. The word asso-

ciations are significantly different, but one word does appear in both con-

texts - thus, its semantics is already enriched by these two meanings. 

Fig.1 Profiling. The same conceptual structure may be viewed as a relational 

complex or a process (action). Langacker [9]. 

 

 At the end of this process, the semantics of these words is grounded in 

one limited context, so to our baby, the words mean have this limited 

meaning, but as its experience broadens, she will generalize the meaning to 

new situations. Note that the semantics learned is not a “primary” or 

“core” meaning – indeed, whether such privileged senses exist is itself un-

certain. The sense learned is just one in a continuum of possible interpreta-

tions, many of which will be learned with further exposure, including poss-

ible metaphorical extensions to other domains.  
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Are designs emergent?     

 

The approach here focuses on a situation where the image schema is avail-

able before the label is known. For human designers, this assumption may 

be questioned, since designers (e.g. students) learn many concepts by be-

ing told – i.e. the concept arises after its name is given. For a human learn-

ing language, beyond a small initial inventory of symbols, the vast majori-

ty of words are learned through its correlation with other words [4]. None-

theless, the early inventory of symbols is crucial, for it provides grounding 

for the compositions that define later symbols. Only in this manner would 

grounding be available for the new concept.   In the design scenario, the 

need for experiencing a domain directly is all the more crucial, which is 

the basis for hands-on approaches in design pedagogy, as opposed to other 

didactic disciplines.  

    

     A second reason for symbols to emerge in a design context is because 

the designer faces a challenge far greater than mere problem-solving or 

search, since the very constituents of his problem are ill-defined. One of 

the first tasks the designer must do is to discover representations at the 

right level for encoding and formulating the problem.  Some of these re-

presentations, if they keep recurring, may become symbols.  This process 

is related to the discovery of chunks, an abstraction formed from many 

input variables, and a topic often associated with design expertise. For ex-

ample, we note that a designer who is an expert in a particular domain is 

“confident of immediately choosing a good [design] based on experience” 

[13]. Clearly, some sort of simplification of the problem space has oc-

curred for the expert. While models of expertise have focused on chunks as 

they arise among trained designers, the process applies to all learning, and 

forms the backbone of symbol learning from our “baby designer” to the 

very best designers. This is why we feel this mode of learning is scalable -- 

from the very early stages demonstrated in this paper, to far more complex 

situations encoding large swathes of domain knowledge. 

 

Related work: Discovering patterns in design spaces 

 

    An early attempt at discovering patterns in the design space of shapes 

may be seen in relation to 2D shapes [25]. Another approach to discover-

ing chunks in design operates within the tradition of formal ontologies 

[22]. Here a learning layer, operating as a manager (M-agents), is added to 

a system being used to create designs. The M-agents consider the good 
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designs that have come up, and try to identify some patterns which even-

tually become chunks that are added to memory. Further, the effectiveness 

of a new chunk can be tracked in subsequent designs to ascertain its utility. 

In design problem re-formulation mechanism suggested by Sarkar etal 

[26], designers can identify latent relationships among different design 

variable groups by using Singular Value Decomposition on the co-

occurrent variable matrix. This helps designers to redefine the design prob-

lem by re-representing it with a possible reduction in dimensionality. 

 

None of these proposals however learn the semantics underlying the 

symbol in a grounded manner, using the feedback received from exploring 

the space of “good designs”. An optimization-based approach towards this 

problem can be seen in [8]. Here the results of multi-objective optimiza-

tion are analyzed manually to propose the possible inter-relationships be-

tween design variables necessary for “good design”. The approach pro-

posed here automates this process for both linear and non-linear relation-

ships. Also, the discovered “dimensions” are proposed as “chunks’ that are 

the putative basis for symbol discovery. 

 

Baby Designer Enterprise 
 

Our approach differs from the above in that it discovers structures in the 

input space, and posits these as proto-symbols, for which labels are then 

determined through language association. Our “baby designer” is at the 

apprentice level that has no prior knowledge about domains, though it 

knows many machine learning algorithms and has a bias towards shorter, 

information-condensing representations. It is given a set of raw descriptors 

(design variables) and a set of performance metrics defined on these va-

riables so it can be evaluate different design instances. By exploring the 

design space it first identifies the pattern of good solutions, the Functional-

ly Feasible Regions or FFRs. Next, it seeks to determine if the FFR is em-

bedded in a lower-dimension sub-space, reflecting some constraints that 

holds among design variables among the “good” solutions. These inter-

relations are proposed as one of the mechanisms for discovering chunks in 

design.   

 

Discovering chunks results in a set of priors which encode domain-

specific knowledge, but these are not the same as symbolic rules, because 

they are not explicit. For example, the system cannot provide a justifica-

tion for such decisions. We may compare these with decisions that a hu-

man designer knows are good but finds difficult to justify, e.g. by saying 
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“looks right” [1]). However, if similar chunks are observed repeatedly, 

especially in different domains, one may become conscious of the pattern, 

a process called reification. These reified chunks are more stable, and are 

sometimes called perceptual symbols in cognitive science [2]; in this work 

we refer to these as image schemas. 

Fig. 2. Architecture of the Baby Designer: The baby designer learns patterns as in 

an apprenticeship situation.  It is presented a design problem with design variables 

and a set of functional constraints that map design instances to performance me-

trics.  While exploring the design space, it uses an inventory of domain-general 

learning algorithms to discover patterns that hold among the better designs, which 

may become chunks if they recur often enough. Labels for these may be learned 

after exposure to language, when they become true symbols. Implicit associations 

(priors) become encoded as domain rules in this symbolic space, thus enabling 

symbolic reasoning. 

 

Subsequently, if the system interacts with a language user and finds that 

a string is strongly correlated with the image schema, then it may identify 

this string as the label, and the resulting structure may become a true sym-

bol, with both a semantics (the image schema) and a linguistic label. Any 

priors that were earlier implicitly known will now get mapped explicitly 

into symbolic rules. These symbolic structures are situated, in the sense 

that they map the semantics in the “right” context at the “right” level of 

detail. Eventually, this will enable the system to reason with the symbol 

more flexibly, generate exemplar instances, and to justify its decisions in 

symbolic terms. 

 

Learning Containment 

Now we present the computational baby designer with the task of 
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inserting a peg into a hole. A very early discovery for human infants is that 

pegs must be narrower than holes, i.e. the hole-width w must be greater 

than the peg thickness t (Fig. 3a). For the human designer, such primitives 

lie at the heart of the semantics for many symbols relating to containment, 

assembly, dimensioning, fit, etc. Thus, learning design symbols cannot 

start as an adult - it must start with our earliest conceptual achievements, 

which is why we call this the “baby designer enterprise”. 

 

Fig. 3. Learning through experience that inserted-object-must-be-smaller-than-

container (w > t).  After a few instances, the experience is unstable, but the pattern 

converges after sufficient instances.   

 

The key to this learning is that functional criteria must be available. In 

these initial stages, we consider the baby designer as an apprentice, so that 

functional criteria are given by a mentor or some other external source. In 

this first learning task, the functional criterion is that the peg must enter the 

hole. Those instances where it can enter (+) constitute the FFR, which is 

distinguished from failures (□). The system has a function generalization 

algorithm that can generalize the pattern in the parameter space- here we 

use a back-propagation perceptron. 

  

We observe from Fig. 3 how, after experiencing just a few instances 

(Fig. 3b), the pattern is inchoate, so the baby keeps trying to insert some 

fat pegs into smaller holes, but this exploration itself keeps filling up the 

negative (black) area of the figure (Fig. 3c,d). Eventually the defining 

boundary becomes sharper, and at some point it does not change as much 
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with new experiences, so that it feels it may have discovered a stable pat-

tern, at least implicitly. This knowledge can be thought of as a simple prior 

defined on the w, t space, an implicit version of the rule that w must be 

greater than t. 

 

Learning about clearance 

In the next step, let us consider that our baby designer has is exploring 

different types of successful insertions - particularly, those involving in-

stances of tight fit and loose fit. Given a functional description of these, it 

learns the corresponding FFRs (Fig. 4a, b, FFRs in gray). These functions 

also become sharper with greater experience.  

Fig.4. Emergence of chunks for fit: “tight" vs. “loose": Given a task which re-

quires a “tight’ fit, the Functionally Feasible regions (FFRs) learned after 20 in-

stances is diffuse (a), but improves within 100 trials (b). For loose fits, a well-

learned stage is shown (c). These FFRs are modeled using PCA, resulting in a 1-D 

characterization where the principal eigenvector represent invariance in w-t. Thus, 

when considering the concept of clearance, the number of parameters involved 

reduces from (w; t, 2-D) to the emergent chunk w-t, a single parameter (1-D). This 

learning process results in two chunks, CT and CL but the system does not have 

any names for these yet.  

 

Next, it attempts to see if the good instances may be lying along some 
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low-dimensional sub-space of the design space <w,t>. To begin with, we 

may use linear dimensionality reduction. Trying out Principal component 

analysis [3], we find that the results on the early learning after 20 samples 

results are not very clear, but after 100 samples, the first eigenvalue is 

clearly dominant (33.60,0.11), and the first eigenvector (-0.72, 0.69) is 

along a 45 degree line in the w, t space (Fig. 4a, bottom). Thus, though the 

design space had two dimensions, we discover that the distribution of good 

instances of tight fit is largely distributed along one dimension. A parallel 

eigenvector is found to be dominant in the loose fit case. These two 1-D 

lines constitute the basis for the categories tight (CT) and loose (CL). The 

invariant along either line is the quantity w−t, which becomes the learned 

“chunk”; its value eventually may form part of the semantics for the sym-

bol “clearance”. 

 

Such correlations, which are embedded as lower-dimensional manifolds 

in the high-dimensional design space, may be rather common in design.  

For example, if strength is to be maximized while minimizing weights, 

then many dimensions need to be balanced – they would rise (or fall) in 

tandem. Thus, for good designs, these inter-relations may result in a single 

chunk.  Discovering these interdependences is a first step towards the 

process of creating semantically rich models of design. While the example 

here deals with only linear subspaces, we have elsewhere dealt with non-

linear manifold discovery [23].  

 

Language Mapping 
 

At this stage, we have an implicit notion of the categories CT and CL, but 

we cannot relate this idea to other concepts because there is no handle or 

label with which to refer to it. The label is a crucial part of the symbol - 

without it, the chunk or image schema that has been learned cannot be re-

lated to a broad host of other concepts. Implicit rules where these chunks 

play a role cannot be used explicitly to justify decisions, or to reason about 

the effects of decisions. More importantly, a label such as “clearance” sta-

bilizes the semantics through social convention; without it the semantics 

may drift with new, similar experiences.  

 

In order to learn a label, we obtain human commentary on the same CT -

CL distinction which has been already learned. We provide human subjects 

with a simple apparatus - several flat pieces of wood with a hole, and some 

cylindrical pegs that fit in these holes with different types of clearance 

(Fig, 5). We give different combinations of these to human subjects and 
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have them describe their experience with them in unconstrained English. 

Then we would associate individual words appearing in these descriptions 

with the concepts, and see if any good labels would emerge. 

 

As discussed above, the same insertion task may be viewed under dif-

ferent profiling distinctions. In some situations the complete task is viewed 

as a whole (atemporal), while elsewhere one may consider its evolution 

over time (temporal). We also explore how these distinctions may lead to 

differences in the symbol used to refer to the same concept. 

 

  
Fig.5. Peg-in-hole assembly :  A, B, C with three hole sizes (22.5, 17.1  and 12.74) 

average diameter respectively) and pegs 1 through 6 (22.4, 21.2, 16.9, 14.5, 12.5, 

and 10.3) are used.  A:1, B:3 and C:5 are tight fits, A:2, B:4 and C:6 are loose.  

 

   For the human designer also, profiling distinctions are important. For 

example, “easy to insert” takes a process view of function, while “loose 

fit” relates more to an atemporal view, although both may be talking about 

the same design. In different design contexts, a designer may use one sym-

bol or another and no amount of standardization can do away with such 

differences. Indeed, this reveals an important aspect of symbol use con-

trasting with the formal view - a symbol is not merely the object being re-

ferred to (referent), or even a class definable by a set of attributes and as-

sociations, for it also encodes a subjective view of  the referent. As a cog-

nitive linguist has colourfully said, the same person may be referred to as 

“eminent linguist” and “blonde bombshell” [10], expressions that highlight 

different profilings for the same referent. 

  

 To test the effect of profiling in greater detail, we designed two differ-

ent scenarios for collecting user data. Although these are not experiments 

in the traditional sense (there is no hypothesis to be validated), we refer to 

these as experiments for want of a better term. In the first experiment, we 

placed already inserted peg-hole assemblies in front of our subjects, and 
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they were instructed not to pick up the block with the hole, so they could 

not practice insertion actions. In the second experiment, we gave them the 

block with the hole and the peg separately and had them play around while 

inserting them. In either case, we asked them to describe the interaction 

between the peg and hole in plain, unconstrained English, and did not cor-

rect any grammar errors etc, though we did transcribe them into written 

texts.  No constraints were imposed on the language, and at least in one 

instance a subject held forth at length about the colour and smoothness of 

the apparatus and other aspects – this was the only narrative excluded from 

our analysis, though it does not substantially affect the result. 

 

    Also, before collecting data, users were permitted two trial rounds, one 

with a tight fit and one with a loose fit, without telling them anything about 

these.   

 

Associating linguistic labels 

 

Next, we outline the process used to discover a linguistic label for the im-

age schema that has been learned. The association of a word with a con-

cept C can be measured in many ways; the machine translation literature 

poses many association measures. One of the simplest is based on condi-

tional probability, but here there is some debate re: the direction of causali-

ty - should we consider the conditional of word w given C or C given w? 

Let nT and nL be the number of words in the CT and CL narratives, and let 

word w have a count of kL and kT in each narrative. Then one may estimate 

the conditional probability p(w/CT) as kT /nT.  For the conditional probabili-

ty of C given w we may adopt Bayes’ rule, which gives us 

Now, since the prior word frequency p(w) is independent, we have  

Furthermore, the number of CL and CT instances in the training data is 

roughly the same so p(CL ) and p(CT ) are equal. Hence the ratio of the two 

conditionals are equal in both directions. Thus, if we find the w,C pair that 

maximizes this ratio, then either conditional would be maximized. 

So our objective is to compute  so that wi would have the 

strongest association with CL. Similarly, the inverse ratio is to be max-

imized for the strongest association with CT.  

For this task, the user narratives are first transcribed and all the narra-



 

Design Computing and Cognition DCC’10. J.S. Gero (ed),   

pp. xx-yy. © Springer 2010 

 

1

3 

tives relating to each fit situation (tight or loose) are combined.  The word 

counts nT, nL, kL, kT are used to compute the conditional ratio and the top 

five correlations in all four Concept-Profile are presented in Table 3.   We 

also observe that subjects use many morphological variations - e.g. for 

“tight” (count=26), we also have “tighter” (3) “tightly” (4) etc. We may 

use stemming [15] (discard common afffixes) to count only the roots of 

such  words.  We contrast below the results with and without stemming – 

and find that even without stemming, correlations are quite strong.  

 

Another step frequently adopted in NLP is to remove the frequent words 

which occur in many diverse contexts, so their relevance in a particular 

task may be less. These include particles and grammatical markers like the, 

a, an, of, in, to, is, am, etc.  However, we found good results even without 

removing these words.  Correlations discovered without these steps im-

plies minimal assumption of linguistic knowledge for the word association 

process.  

 

Experiment: STATE:   The purpose of this first experiment is to focus 

on state distinctions - i.e. collect the spoken English data for the situation 

where the subjects is given a  peg already inserted into the hole. We then 

collect their unconstrained English descriptions.  

 

Method: Apparatus: six wooden pegs (1...6) and three blocks A,B,C as 

shown in Fig. 5.  

  

Participants: Eighteen IIT Kanpur graduate students, both male and fe-

male, of age 18-24, participated in generating narratives. Students had 

back-grounds in physics, mechanical engineering, biology, electrical engi-

neering, chemical engineering and design. Level of competence in spoken 

English varied somewhat across the group sentence structures were re-

tained as spoken, even if they were ungrammatical.  

 

Procedure Each participant is presented with the following instruction:  
“This is a peg and this is a hole. The peg is already inserted into the hole. Play 

with the assembly, but please do not lift the block with the hole from the table. 

Describe the interaction between the peg and hole in English. ” 

    Note that no reference was made to the tight-loose distinction;  many 

participants reported on many other aspects such as the relative sizes of  

the peg and hole pairs, their shapes, the kind of construction, etc.   In state-

profiled trials a peg pre-assembled into blocks A, B, and C was placed on 

the table and the subject could not to lift these blocks from the table – thus 



 

Design Computing and Cognition DCC’10. J.S. Gero (ed),   

pp. xx-yy. © Springer 2010 

 

1

4 

they could experience the assembly more as a whole, rather than the inser-

tion task as a process. Each subject was given alternating tight and loose 

assemblies in the order (A:1) - (A:2) - (B:3)- (B:4) - (C:5) - (C:6). Sample 

narratives for two (A: 1) and (A: 2) of a speaker is given in Table 1. 

     

Analysis and Discussion: The narratives for tight {(A: 1), (B: 3), (C: 5)} 

and loose {(A: 2): (B: 4) and (C: 6)} cases result in a small sample corpus 

(1099 words for CT, and 904 words for CL).  Many words appearing in one  

Table1: Transcribed narrative: State profiled. […] indicates pause. 
 

set do not appear in the other, but fortunately, the top twenty-five words 

appearing in either set were also present in the other, so the ratios could be 

computed for these frequent words.    

 

To ensure the relevance of these words, we tried to ensure that the prob-

ability of the word appearing in this context is higher than its prior in gen-

eral usage; i.e. p(w/C) should be greater than p(w).  Priors were estimated 

from a spoken English corpus (based on TV scripts) with 29 million words 

[16].  For all the top 25 words the conditional was higher than the prior.  

Table 2 shows the top five words for the tight corpus (CT ), in descending 

order of the ratio p(w/CT) by p(w/CL). Thus, the strongest correlations for 

CT are “tight” , “to”, “into”, “not”, “rotate”. Now, the prior probability of 

words such as “to” and “not” are several orders of magnitude higher - i.e. 

these are most likely used in a wide variety of situations. Thus the more 

appropriate words for this situation are “tight”, “into”, and “rotate”.  In the 

unstemmed case, we find “cannot” and “am” in addition to “tight”, “into”, 

“to”. The term “tight” is the most likely key word in both stemmed and 

unstemmed cases. The word “rotate” does not appear without stemming 

since morphological variants such as rotating (5 times) and rotation, rota-

tions (1 each) are lost.  The word rotate itself appears only in the state pro-

file, probably because subjects were instructed not to remove the peg so 

the only action they could try was to rotate it in the hole 
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Table 2. State profiled: [tight] and [loose] corpora. 

 

Experiment: ACTION:  In this experiment the subjects are permitted to 

actively insert the peg into the hole, using the same apparatus as above.  

 

A different set of eighteen graduate students, both male and female, of age 

18-24, studying physics and mechanical engineering, participated in gene-

rating narratives. Each participant is presented with the following instruc-

tions:      
“This is a peg and this is a hole. The peg can be inserted into the hole.  De-

scribe the interaction between the peg and hole in English. ” 

Table 3. Transcribed narratives : Action profile. 
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As in the previous experiment, each subject is given alternating tight 

and loose fit situations, and asked to describe their experience in spoken 

English (sample narratives in Table 3).  

Table 4. Action Profile: [tight] and [loose] corpora: Top five words by conditional 

ratio. 

 

The top five word associations for CT are presented in Table 4 sorted by 

the ratio of conditional probabilities. It is observed that both with and 

without stemming,  “tight”, and “first” are most relevant associations for 

action profiled CT, , though after stemming, the term “tight” emerges 

stronger. For loose fits when profiled as a process, “easy” is found to have 

the strongest association both with and without stemming.   
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Discussion: These experiments demonstrate that finding the linguistic 

labels for image schemas like tight and loose is possible without much 

prior knowledge, of either the domain or of language. Initially we had 

thought we may need to use standard techniques like  stemming and stop 

word removal, and the results - that “tight” and “loose”  came up so readily 

in the state profiled experiment - were a pleasant surprise. Further, in the 

action profiled case, the word for describing the action where the clearance 

is high, in English, is not “loose”, but “easy” - an association that some 

may find reasonable.     The other interesting fact is that the same word, 

“tight” is used as the label for two related but somewhat different seman-

tics - the tight fit case profiled as a state, and also an action. This is not 

very surprising, since languages must encode, in a finite inventory of units, 

the unbounded phenomena present in the universe.  

 

So this type of polysemy, which is sometimes called lexical polysemy 

(as distinct from accidental polysemy or homonymy), is extremely wide-

spread, e.g. the word “motor”, which may indicate the engine of a car or an 

electric motor. Without taking contextual cues into consideration, symbol 

meanings are impossible to define. 

 

Conclusion 
 

This work aims to introduce a novel mechanism for symbol acquisition, 

but the present demonstration is necessarily very limited, as indicated by 

the “baby designer” appellation. A baby's symbols are initially over-

specialized, and apply only in the limited contexts where they learn it.  

Similarly, the baby designer's symbols will initially have narrow, specific 

meanings.  However, once the initial symbols are available, one may 

merge other experiences sharing the same label, to broaden the semantics.  

How such experiences would be amalgamated into a more general concep-

tual structure remains a key question for further work.   

 

At this stage, our goal is to present grounded acquisition of sym-

bols as an alternative to traditional models used in knowledge-based sys-

tems for design.  While we have argued that such a system is likely to be 

more scalable and more flexible in its deployment, clearly the range of 

actual problems that can be handled by such an approach will remain ra-

ther limited for some time to come. The demonstration here is extremely 

simple, yet the ease and lack of prior domain assumption argues for scala-

bility.  



 

Design Computing and Cognition DCC’10. J.S. Gero (ed),   

pp. xx-yy. © Springer 2010 

 

1

8 

As of now, the system learns patterns only in the apprenticeship mode, 

which works only for well-understood domains.  The symbols learned thus 

can be used to create flexible knowledge structures for these known do-

mains.  Knowledge with a rich semantic basis is a pre-requisite for more 

difficult challenges such as novel domains or creative designs – but here 

again, much work remains to be done.  

 

More than the results itself, we feel that the key contribution of this 

work is to opens up several new avenues for further integration of cogni-

tively motivated approaches into computational systems for design.  One 

of these is that of broadening the semantics of an initial symbol via new 

exposures, a problem we are exploring now.  Another question that arises 

is the compositions of symbols. New symbols often arise as compositions - 

“thick flange”, “airy hallway”, “pinwheel arrangement” etc. instantiate or 

blend some aspects from each of its constituents, and which to choose and 

which to ignore remains a serious challenge for any model of semantic 

composition.  Learning image schemas in novel situations beyond the ap-

prenticeship scenario is another serious challenge.  

 

Another potential contribution of this work is a possible approachment 

between formal or systematic approaches to design [5, 12] and other, more 

fluid, emergent views [26, 25].  The symbols that are learned here are in-

itially emergent, but may eventually be used to formalize design know-

ledge and lead to coherent theories for different domains. This may pro-

vide a basis for unifying the so-called systematic and creative camps in 

design theory.  

 

When will the baby designer be able to solve actual design problems?  

Clearly, the system will need to be exposed to a lot more situations (equiv-

alent to a fifteen-year childhood, and then a five-year apprenticeship, say), 

but we will also have to develop much of the learning structures needed to 

consolidate these experiences. The paradigm proposed here makes only a 

small start, and like the interaction of a baby with its world, it opens up 

more questions than answers. We hope that with further work, we may 

discover the contours of some of these answers, and that these may then 

illuminate the potentialities of this approach over the coming years.  
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